首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了低挤压比(挤压比8)下挤压温度和挤压速度对AZ31B镁合金微观组织和力学性能的影响。采用光学显微镜观察了显微组织,采用材料拉伸试验测试了力学性能,并用扫描电镜观察了拉伸试样的断口形貌。结果表明:低挤压比时棒材的组织为典型的混晶组织——由发生再结晶的细小晶粒包裹未发生再结晶的粗大晶粒;300~400℃时,随挤压温度的提高,材料的伸长率升高,抗拉强度下降;在300℃挤压时,随挤压速度的提高,材料的伸长率升高,抗拉强度下降,挤压棒的拉伸断口由混合断裂转变为明显韧性断裂;250℃时综合力学性能最好,抗拉强度340 MPa,屈服强度280 MPa,伸长率23%。  相似文献   

2.
挤压态AZ31B镁合金的超塑性研究   总被引:1,自引:0,他引:1  
郭超  杨永顺  周新平 《铸造技术》2007,28(2):242-244
将铸态镁合金AZ31B在300℃以1∶6的挤压比进行挤压,在310-460℃温度范围内,以1×10^-1-1×10^-4s^-1初始应变速率,对挤压后试样作单向拉伸试验,研究AZ31B镁合金的超塑性流变行为。扫描电镜对拉伸后的试样断口进行分析。试验表明,经过热挤压可以改善镁合金的拉伸力学性能,在415℃、应变速率为1×10^-4s^-4时挤压态镁合金具有良好的超塑性,伸长率达到了380%;断口分析表明,AZ31B的超塑变形的主要机制为晶界滑移。  相似文献   

3.
研究了不同挤压比对AZ31B镁合金显微组织、力学性能的影响。采用光学显微镜观察了显微组织,拉伸试验测试了力学性能,并配合扫描电镜观察了拉伸试样的断口形貌。结果表明:随着挤压比的增加,组织由部分动态再结晶转变为细致的完全动态再结晶,挤压比61~109时,晶粒细化程度变小;挤压比增加,强度及伸长率都增加,抗拉强度、屈服强度及伸长率最高分别达340 MPa、271.5 MPa和21.5%,但高挤压比所获得的性能提高收益小。合金拉伸断口由混合断裂转变为明显韧性断裂。合理控制挤压比可得到良好的综合性能与均匀细致的组织。  相似文献   

4.
挤压工艺对AZ31镁合金组织和性能的影响   总被引:2,自引:0,他引:2  
研究了挤压温度和挤压速率对AZ31镁合金显微组织、耐腐蚀性能和力学性能的影响。结果表明,通过300℃下的热挤压变形,AZ31合金发生动态再结晶,合金组织比铸态时细化,耐腐蚀性能和力学性能明显提高;AZ31镁合金挤压后的组织及力学性能受挤压温度及挤压速率的影响,在本试验范围内,AZ31镁合金经过挤压温度为300℃、挤压速率为6.0 mm/s的挤压变形后得到的组织均匀细小,耐腐蚀性能和力学性能良好。  相似文献   

5.
主要研究了不同挤压温度下AZ31镁合金的微观组织和力学性能。结果表明:AZ31镁合金挤压试样会发生动态再结晶过程,且随着挤压温度升高晶粒的尺寸会增大;随着挤压温度的升高,试样的屈服强度和抗拉强度都会降低,伸长率会增加;在室温拉伸试验时试样发生韧性断裂。  相似文献   

6.
研究挤压温度和挤压比对AZ80合金组织、力学性能和拉伸断口的影响。结果表明,在相同挤压比条件下,AZ80合金的晶粒尺寸随着挤压温度的升高而增加;370℃和410℃挤压态试样的抗拉强度均高于铸态和均匀化态,且断后伸长率也明显提高。综合晶粒组织、拉伸力学性能和断口形貌表明,AZ80合金最佳挤压成形温度为410℃。在挤压温度相同时,提高挤压比可以提高合金的抗拉强度,但是断后伸长率有所降低。  相似文献   

7.
利用光学显微镜(OM)、万能试验机研究了不同挤压温度对AZ80镁合金显微组织与力学性能的影响。结果表明:AZ80镁合金经不同温度挤压后,抗拉强度和伸长率均有明显提高。当挤压比20,挤压速度2 mm/s时,360℃挤压的AZ80镁合金抗拉强度和伸长率均达到最大值,分别为367MPa和16.2%,比挤压前试样分别提高了85.4%和138.2%。360℃挤压的合金组织中原始粗大晶粒发生动态再结晶,有大量细小等轴晶产生,晶界处无明显第二相析出;挤压温度达到390℃时,组织中动态再结晶晶粒开始长大。  相似文献   

8.
为了获得高性能镁合金板材,采用正向热挤压将铸态AZ31镁合金坯料挤压成2 mm厚的板材,研究了其显微组织演变及力学性能等。结果表明:铸态AZ31镁合金坯料挤压成板材后可以获得均匀细小的再结晶晶粒组织,其力学性能(屈服强度、抗拉强度、伸长率)大幅度提升。铸态AZ31镁合金坯料在400、450℃挤压成板材后,平均晶粒尺寸可由390μm分别细化至3.9、5.6μm。挤压后的AZ31镁合金板材展现出典型的(0001)基面织构,大部分晶粒的c轴垂直于板材表面。铸态AZ31镁合金的力学性能较差,而AZ31镁合金挤压板材在三个拉伸方向上均展现出优越的力学性能。随挤压温度的升高,AZ31镁合金挤压板材晶粒长大且显微组织不均匀,综合力学性能也有所下降。  相似文献   

9.
利用挤压成形工艺在300 ℃下将AZ31镁合金铸锭挤制为细晶板材,将制成的拉伸试样在250 ℃下分别以不同的应变速率进行等应变速率拉伸,研究了试样的超塑性变形性能,采用光学显微镜和扫描电镜分别观察了变形后试样的显微组织和断口形貌。研究结果表明,在250 ℃和2×10-2 s-1应变速率下,AZ31镁合金试样的伸长率达到了290%,实现了较低温度和较高应变速率下的超塑性变形,有利于节约能源和提高效率;在250 ℃下以2.5×10-4 s-1应变速率进行拉伸变形,试样的伸长率最大,达到了390%,最大伸长率下AZ31镁合金的显微组织显示,变形后试样的晶粒仍保持等轴状,但晶粒尺寸比原始晶粒增大约一倍,试样断口形貌表现为典型的韧窝型穿晶断裂特征。  相似文献   

10.
本文利用连续挤压技术的单、双杆进料方法试验生产了尺寸为160mm×8mm, 170mm×4mm和160mm×3mm的AZ31镁合金板材。分析了单、双杆进料方式,不同宽厚比和不同挤压速度等条件对镁合金板材横截面微观组织及力学性能的影响。讨论了应用双杆进料连续挤压工艺生产AZ31镁合金宽薄板的工艺可行性。结果表明:与单杆进料相比,双杆进料方式的连续挤压AZ31镁合金板材横截面微观组织均匀性较好,板材平均抗拉强度可达到239MPa,平均延伸率为15%。宽厚比由20增加到53,可获得5μm细化晶粒的镁合金板材。随挤压轮转速提高,板材抗拉强度降低,是由于温度升高会导致晶粒尺寸变大。  相似文献   

11.
主要研究了挤压速度和挤压温度两个工艺参数对AZ31B镁合金工件成形过程中表面粗糙度和显微硬度的影响。结果表明:当挤压速度小于2.8 mm/s时,提高挤压速度能降低镁合金的表面粗糙度数值,改善表面质量;当速度超过3.0 mm/s时,反而会提高粗糙度数值,对表面质量产生负面影响。提高挤压温度也能降低镁合金的表面粗糙度数值,当挤压温度到达360℃后,表面粗糙度不再发生变化,表面质量趋于稳定。当挤压速度小于2.4 mm/s时,提高挤压速度能提高镁合金的显微硬度,改善镁合金的表面质量;但速度超过2.4 mm/s后,显微硬度迅速降低,造成表面质量急剧下降。当挤压温度小于360℃时,提高挤压温度也能提高镁合金的显微硬度,温度超过360℃后,显微硬度明显降低。  相似文献   

12.
为了研究塑性变形对铸态镁合金组织和性能的改善作用,用铸态AZ31镁合金进行了正挤压试验,并测试了原始试样和变形后试样的组织和性能.结果表明,正挤压可使铸态AZ31合金晶粒显著细化;挤压后抗拉强度和伸长率比挤压前分别提高22%和100%;随挤压温度升高,挤压所得试样的抗拉强度明显下降,但伸长率变化幅度较小;随挤压比的升高,挤压所得试样的伸长率和抗拉强度均明显升高.  相似文献   

13.
对变形镁合金AZ61铸态试样和不同温度下的挤压成形试样的微观组织结构、室温力学性能以及拉伸断口进行了研究.结果表明,360℃的热挤压温度不能成形试样,在370、385、400℃下进行热挤压可以得到外形完整、表面光洁的试样;随着挤压温度提高,AZ61挤压试样发生再结晶的晶粒数量显著增加,达到400℃时形成均匀细小的等轴晶组织;370、385、400℃下的挤压试样断口均表现为明显的塑性断裂特征,400℃时挤压试样的抗拉强度达到297.43 MPa,屈服强度达到221.42 MPa,伸长率为22.39%,具有较好的力学性能.  相似文献   

14.
利用连续挤压技术的单、双杆进料方法实验生产了尺寸(宽×厚,下同)为160 mm×8 mm,170 mm×4 mm和160mm×3 mm的AZ31镁合金板材。分析了单、双杆进料方式,不同宽/厚比和不同挤压速度等条件对镁合金板材横截面微观组织及力学性能的影响。讨论了应用双杆进料连续挤压工艺生产AZ31镁合金宽薄板的工艺可行性。结果表明:与单杆进料相比,双杆进料方式的连续挤压AZ31镁合金板材横截面微观组织均匀性较好,板材平均抗拉强度可达到239 MPa,平均延伸率为15%。宽/厚比由20增加到53,可获得晶粒尺寸5μm的细晶镁合金板材。随挤压轮转速提高,板材抗拉强度降低,这是由于温度升高导致晶粒尺寸变大所致。  相似文献   

15.
通过塑性变形装置实现了挤压态ZK60镁合金往复挤压实验,探讨了显微组织演变过程和力学性能变化。结果表明:相比初始挤压态,350℃往复挤压后各个道次的试样具有更加优良的显微组织和力学性能。随挤压道次增加,显微组织晶粒更加细化,等轴细小晶粒增多,组织均匀性不断提高;拉伸断口形貌显示随着道次增加,韧窝数量与深度明显增加,变形能力提高显著。拉伸实验数据表明,往复挤压很大程度上改善了ZK60镁合金的力学性能,特别是塑性变形能力。1道次往复挤压后,径向硬度都比原始态高,并随温度升高有下降的趋势,轴向硬度也随着温度升高而降低,390℃下试样轴向硬度与初始样硬度值接近;350℃下不同道次往复挤压后,试样中部径向、轴向硬度随道次增大而降低,而颈部径向硬度呈不规律性变化。  相似文献   

16.
AZ31B管材挤压数值模拟及挤压极限图的建立   总被引:1,自引:0,他引:1  
采用Gleeble3000型热-力学模拟试验机,对不同温度和应变速率下的AZ31B镁合金的变形形为进行了研究,以得到材料的真实应力—应变曲线,导入专业成形数值模拟软件,对尺寸为尴40×3的AZ31B无缝管材,以坯料初始温度240℃~480℃、挤压杆速度2mm/s~80mm/s的条件进行了数值模拟,根据模拟数据建立了挤压极限图,并通过挤压工艺试验对所得的挤压极限图进行了验证,结果吻合的很好。  相似文献   

17.
AZ31镁合金变通道角挤压工艺   总被引:2,自引:1,他引:1  
将Φ40mm×50mm的AZ31镁合金圆棒经变通道角挤压(Change channel angular extrusion,CCAE)成厚度约为5mm的板材。通过TEM观察表明,AZ31镁合金的形核机制主要是动态再结晶形核。结果表明,经CCAE变形后,由晶粒的剪切破碎和动态再结晶使得镁合金晶粒明显细化。内角、挤压比、挤压温度和挤压速率等对板材的显微组织结构有重要的影响。在100~450℃温度范围内进行CCAE变形,AZ31镁合金的晶粒尺寸随变形温度的升高而增大。AZ31镁合金经CCAE热变形后,合金的综合力学性能得到改善。  相似文献   

18.
利用质量损失法及X射线衍射(XRD)、扫描电镜(SEM)测试手段研究了铸态和挤压态AZ31B镁合金在模拟流动海水中浸泡12 h的腐蚀行为及随流速变化的规律。试验结果表明,AZ31B铸态镁合金试样的耐蚀性要远大于挤压态试样,且二者的腐蚀速率随搅拌速度增加的变化趋势有所不同:铸态试样的腐蚀速率随搅拌速度的增加近似呈线性上升,而挤压态试样的腐蚀速率随搅拌速度的增加而先增大后下降。  相似文献   

19.
采用电弧增材制造工艺制备了AZ31镁合金,研究了80~120 A电流大小对电弧增材制造镁合金试样的成型性能,组织以及力学性能的影响。结果表明,电流大小对AZ31镁合金成型性能的影响较大,随着电流的增加成型试样的层厚逐步减小,成型的最大宽度增加。晶粒尺寸随电流大小的变化不大。电流的变化对力学性能影响很小,并且不同电流条件下试样的拉伸断口形貌相似。  相似文献   

20.
杜娟  陈云  罗继相 《铸造技术》2015,(3):692-696
以不同壁厚的矩形试样为研究对象,运用正交试验设计,研究了壁厚、浇注温度、模具温度、挤压速度对挤压铸造AZ91D镁合金流动性影响规律。试验结果表明:对壁厚为1 mm、2 mm、3 mm试样的流动性影响最大的因素是浇注温度,对4 mm试样则是模具温度。当浇注温度在700℃到750℃变化时,增加浇注温度对提高AZ91D镁合金的流动性是有利的;对厚壁铸件(3 mm和4 mm)通过提高模具温度而增加镁合金的充型能力是非常有效的;增加挤压速度对薄壁试样的流动性影响不是很明显,但是随着试样壁厚的增加,影响逐渐增大。试验结果也表明,挤压铸造工艺不适合于生产壁厚小于3 mm的镁合金铸件,否则难以得到轮廓清晰的完整铸件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号