首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了AISI 310S不锈钢经过深冷处理之后,在0.5 M的H_2SO_4溶液中表现出不同的耐酸腐蚀磨损性能。通过XRD、SEM、EDS分析及MFT-5000型摩擦试验机磨损试验等,考察了不同深冷处理时间对试样耐腐蚀磨损性能的影响。结果表明,深冷处理之后,材料的耐酸腐蚀性能提高,且深冷处理4 h时,样品的耐酸腐蚀性能达到最佳值,相比于未深冷处理,自腐蚀电位从-0.333 V提高到-0.295 V,提升11.4%;同时,材料的耐酸腐蚀磨损性能也得到提高,在深冷时间4 h时磨损率达到最低值59×10~(-6)mm~3/Nm,相比未深冷处理样品93×10~(-6 )mm~3/Nm,磨损率降低57.6%,表现出最佳的耐腐蚀磨损性能。  相似文献   

2.
借助光学显微镜(OM)、透射电镜(TEM)及电化学实验等方法研究了退火工艺对深冷轧制AISI310S奥氏体不锈钢显微组织和耐蚀性能的影响。结果表明:退火温度小于700℃,深冷变形组织处于回复阶段,退火温度大于700℃,深冷变形组织处于再结晶阶段,再结晶晶粒尺寸处于亚微米量级;随着退火温度增大至1000℃后,再结晶晶粒明显长大至2μm左右。极化曲线测试结果表明,与深冷变形奥氏体不锈钢相比,经退火处理后奥氏体不锈钢具有更高的自腐蚀电位,更低的腐蚀电流密度和更好的抗腐蚀性能。  相似文献   

3.
研究了热处理工艺(不同固溶温度和固溶时间)对钼铜奥氏体不锈钢析出物含量和形态的影响,以及在不同固溶温度下材料的耐腐蚀磨损性能.试验结果表明,钼铜奥氏体不锈钢析出物随固溶温度的升高和固溶时间的延长而增多,其形态也由针棒网状长成块状;在纯磨损环境下,1100 ℃×8 h空冷下的奥氏体不锈钢析出物数量最多,耐磨损性能最好;而在有酸的腐蚀磨损环境介质中,950 ℃×8 h空冷的热处理工艺下的材料耐腐蚀磨损性能最佳.  相似文献   

4.
以镍粉和WC粉为原料,采用激光熔覆法在310S奥氏体不锈钢表面制备了镍基-WC复合涂层,研究了激光熔覆层的显微形貌、物相组成和耐磨性能,并分析了复合涂层的作用机理。结果表明,激光熔覆层致密,无气孔或者其它显微缺陷,熔覆层与基材冶金结合良好;Ni基-20%WC激光熔覆层的物相为:Ni_3Cr_2、Ni_(17)W_3、Cr_4Ni_(15)W、Fe_6W_6C、Mo_6Ni_6C、W3_C和WC;不同添加量的激光熔覆层的磨损失重均小于不锈钢基材,随着WC含量的增加,熔覆层的磨损失重量呈现逐渐降低趋势。  相似文献   

5.
通过金相显微组织、力学性能及腐蚀性能等性能测试研究了固溶处理工艺对310S耐热不锈钢的组织和性能的影响。结果表明:随着固溶处理温度升高,晶粒逐渐变大,断后伸长率增加、冲击功提高,而屈服强度、抗拉强度和硬度逐渐减小,但α相出现先降低后略有增多的规律。综合考虑微观组织和性能测试结果,推荐固溶处理温度为1120℃,水淬处理。  相似文献   

6.
采用SEM、TEM及微拉伸试验等方法,对深冷轧制变形90%的AISI310S奥氏体不锈钢不同温度(500~1000℃)及时间(2~60 min)退火处理后的微观组织及性能进行了研究。结果表明:当退火温度在700℃以下时,深冷变形组织处于回复阶段;退火温度在700℃以上时,深冷变形组织处于再结晶阶段,随着退火温度升高至1000℃,再结晶程度充分完全的同时伴随着再结晶晶粒的长大,1000℃退火10 min条件下,奥氏体晶粒长大至3μm左右。在退火温度800℃下,随着退火时间从2 min增加到60 min,奥氏体不锈钢晶粒尺寸从300 nm增大至750 nm。退火温度从500℃增至1000℃,奥氏体不锈钢的强度和硬度呈现出先升高后下降的趋势,伸长率则一直呈增加趋势,断口形貌也由韧、脆性混合断裂向韧性断裂发生转变。  相似文献   

7.
利用XRD、OM、EPMA和SEM研究不同Al含量下310S不锈钢的显微组织,并测试其力学性能。结果表明,随着铸态310S不锈钢中Al含量的增加,Cr和C元素在铁素体中的富集明显,固溶后310S不锈钢中Cr和C的化合物溶解。另外,合金中铁素体的体积分数随Al含量的增加而增加,相同Al含量下固溶后合金中的铁素体体积分数高于铸态的。Al含量为2%时,310S不锈钢的综合力学性能最好。固溶后合金强度明显高于铸态的,而塑性降低不明显。  相似文献   

8.
低温退火对冷轧奥氏体不锈钢带硬度和组织的影响   总被引:1,自引:0,他引:1  
采用TEM、XRD和VSM等分析手段研究了SUS301冷轧不锈钢带低温去应力退火过程中组织和硬度的变化规律.结果显示,低温退火时,SUS301冷轧不锈钢带变形组织发生回复,硬度却随退火温度升高略有上升.退火过程中溶质原子偏聚和相变强化机制共同作用是造成冷轧奥氏体不锈钢带硬度升高的主要原因.  相似文献   

9.
采用SEM、TEM及微拉伸试验等方法,对深冷轧制变形90%的AISI310S奥氏体不锈钢不同温度(500~1000℃)及时间(2~60 min)退火处理后的微观组织及性能进行了研究。结果表明:当退火温度在700℃以下时,深冷变形组织处于回复阶段;退火温度在700℃以上时,深冷变形组织处于再结晶阶段,随着退火温度升高至1000℃,再结晶程度充分完全的同时伴随着再结晶晶粒的长大,1000℃退火10 min条件下,奥氏体晶粒长大至3μm左右。在退火温度800℃下,随着退火时间从2 min增加到60 min,奥氏体不锈钢晶粒尺寸从300 nm增大至750 nm。退火温度从500℃增至1000℃,奥氏体不锈钢的强度和硬度呈现出先升高后下降的趋势,伸长率则一直呈增加趋势,断口形貌也由韧、脆性混合断裂向韧性断裂发生转变。  相似文献   

10.
用自制的恒位移加载台,在透射电镜中原位观察310奥氏体不锈钢在纯水中局部溶解前后裂尖位错组态的变化以及微裂纹的形核和扩展。结果表明,310奥氏体在室温纯水中局部阳极溶解促进位错发射,增殖和运动,在低应力下,纳米级微裂纹在无位错区中连续或不连续形核,由于介质的作用,纳米级微裂纹并不钝化成空洞或缺口,而是理解扩展。  相似文献   

11.
工业冶炼的310S铸坯,通过Fact Sage软件对其化学成分进行第二相析出模拟和SEM缺陷检测,排除了析出相是产生缺陷的直接原因。后经生产试验发现投入机架除磷的钢卷表面出现了缺陷,而没有投入机架除磷钢卷表面质量良好无缺陷发生。因此,310S耐热钢表面缺陷产生的原因是轧制过程中钢板表面出现微裂纹形成了二次氧化铁皮,二次氧化铁皮被酸洗后形成。为避免表面缺陷再次发生,310S耐热不锈钢批量轧制时建议只使用粗除磷工艺而不使用机架除磷工艺。  相似文献   

12.
用自制的恒位移加载台,在透射电镜中原位观察310奥氏体不锈钢在纯水中局部溶解前后裂尖位错组态的变化以及微裂纹的形核和扩展。结果表明,310奥氏体不锈钢在室温纯水中局部阳极溶解能促进位错发射,增殖和运动,在低应力下,纳米级微裂纹在无位错区中连续或不连续形核,由于介质的作用,纳米级微裂纹并不钝化成空洞或缺口,而是解理扩展。  相似文献   

13.
《铸造》2015,(5)
采用低倍检测、夹杂物统计、金相组织观察等方法,研究了310S耐热奥氏体不锈钢连铸坯质量情况。结果表明:电磁搅拌可有效提高310S连铸坯等轴晶率;连铸坯试样中夹杂物以小于10μm为主,上表面1#、4#和铸坯料中心2#试样存在大于20μm夹杂物颗粒,夹杂物类型以低熔点的A1、Ca、Si的复合氧化物为主;连铸坯金相组织以奥氏体为主,铸坯料中心2#和1/4近表面7#的高温铁素体组织含量分别1.102%、0.213%。  相似文献   

14.
针对310S钢使用寿命短的现象,通过FactSage软件进行了第二相析出模拟,利用能谱对基体和点状第二相进行了成分分析,通过SEM和TEM对点状第二相进行了结构分析。结果表明:310S不锈钢凝固过程中主要析出的第二相为碳化物、Cr、Ni、N复合化合物、(Mn,Fe)S和σ相;第二相的Cr含量明显偏高于奥氏体基体,硬度在170~185HV,且σ相不可能形成;第二相是具有立方结构的Cr_(23)C_6;结合SEM、TEM检测结果可以认为较高的热处理温度能有效抑制第二相的析出。  相似文献   

15.
深冷轧制对AISI 310S不锈钢组织和性能的影响   总被引:1,自引:0,他引:1  
采用深冷轧制技术对AISI 310S奥氏体不锈钢进行不同变形量的实验,借助OM、SEM、TEM、XRD及微拉伸试验等方法研究了不同变形量下奥氏体不锈钢的组织特性及性能变化规律。结果表明:奥氏体不锈钢在深冷轧制不同变形量下均未发生应变诱发马氏体相变,在变形量为30%时,组织内部出现高密度位错且夹杂少量的形变孪晶,随着变形量增大至70%时,组织内部出现大量形变孪晶,孪晶与位错的交互作用显著加剧;到变形量为90%时,晶粒完全碎化至纳米量级。而且随着变形量的增大,强度指标大幅度上升,屈服强度、抗拉强度分别从原始态的305 MPa、645 MPa增加至1099 MPa、1560 MPa;而伸长率则从40.8%(原始)下降至6.4%(变形量90%),拉伸断口由韧性断裂向准解理断裂转变。  相似文献   

16.
采用热重分析法对不同稀土Ce含量的310S奥氏体耐热不锈钢高温氧化行为进行了系统研究,通过氧化增量曲线分析了相同温度下试验钢的氧化增量规律,并采用场发射电子探针(EPMA)表征氧化膜断面结构及元素分布,同时采用X射线衍射仪(XRD)分析氧化膜的物相组成。结果表明:在循环氧化初期,试验钢的高温氧化增量曲线遵循抛物线规律。试验钢的氧化膜由外层(Cr,Mn)3O4“尖晶石”型氧化物和内层Cr2O3氧化物组成。适量的稀土元素Ce能促进氧化物/基体界面处的应力释放,同时减少并延缓氧化膜与基体界面孔洞的形成,因而提高氧化膜的抗剥落性。  相似文献   

17.
经济型双相不锈钢以其低廉价格、良好的力学及耐蚀性能的综合优势受到重视,但其硬度低,抗磨性能较差,限制了该合金的广泛应用。对LDX2101经济型双相不锈钢在390℃到480℃温度区间和25%N2+75%H2气氛中离子氮化10h,研究了氮化改性层的组织结构、机械性能、耐蚀性以及干摩擦和腐蚀磨损性能。结果表明,离子氮化后可在LDX2101表面形成一层具有一定硬度的致密氮化层,氮化层厚度随处理温度升高由5μm增加到28μm。表面原奥氏体和铁素体晶粒氮化后分别转化为S相(γN)和针状ε相镶嵌其中的氮在铁素体中的过饱和相αN。氮化后LDX2101的表面硬度最高可提高4倍以上,干摩擦条件下的磨损量可降低3个数量级以上。干摩擦条件下氮化层的耐磨性取决于氮化层硬度和厚度,而在腐蚀介质中的磨损性能与氮化层耐蚀性相关。研究证明只有低温离子氮化(≤420℃)可提高LDX2101的腐蚀磨损性能。  相似文献   

18.
对310S不锈钢在高温环境下进行循环氧化试验,采用增重法绘制出了310S奥氏体不锈钢高温氧化动力学曲线,并结合金相显微镜和扫描电镜对氧化膜的厚度和表面形貌进行了分析。结果发现,氧化速度随着时间的延长而降低,高温氧化后试样表面为黑色,氧化膜的厚度20μm左右,试样表面存在四面体结构组成,其成分可知为富含铬和锰的氧化物,铁含量很低。  相似文献   

19.
为避免传统直流离子渗氮存在的表面打弧和边缘效应等弊端,采用活性屏阳极渗氮法对AISI 304奥氏体不锈钢进行表面处理。将样品放置于阳极电位,在440~520℃范围内,渗氮处理8 h。分析了渗氮层的微观组织结构与形貌,并考察了渗氮前后的摩擦磨损性能。结果表明:在低温440℃下,在表面制备了高硬度的S相强化层。XRD与TEM表明S相为面心立方结构,且无Cr N相析出。高温520℃渗氮表面硬度值(1100 HV0.1)是基体的5倍,但Cr N相明显析出。在干摩擦条件下,渗氮处理后的摩擦系数在0.8左右,相对渗氮前降低约0.2,特别是磨损率只有渗氮前的十分之一量级。磨损机制从原始基体的严重粘着转变为轻微的氧化和磨粒磨损。  相似文献   

20.
研究了200~750 ℃退火对冷拔21-6-9奥氏体不锈钢显微组织的影响。结果表明,在200~550 ℃退火时,冷拔21-6-9奥氏体不锈钢的晶粒尺寸及孪晶密度变化不大,主要以回复为主,无第二相析出;当退火温度高于550 ℃时,晶粒发生了再结晶,并有大晶粒吞并小晶粒的现象,孪晶密度随退火温度升高先增加后减小,且在650 ℃退火后组织中有Cr23C6型碳化物析出,并随着退火温度的升高析出物逐渐增多。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号