首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用X射线衍射分析(XRD)、电子背散射衍射分析(EBSD)、电导率测试、硬度测试、拉伸试验、晶间腐蚀试验和剥落腐蚀试验,研究了固溶处理前的预回复处理(250℃×24 h+300℃×6 h+350℃×6 h+400℃×6 h)对高合金化铝合金Al-13.0Zn-3.16Mg-2.8Cu-0.2Zr-0.07Sr挤压材在T652态组织与性能的影响。结果表明,固溶前的预回复处理降低了位错密度,减小了平均晶粒尺寸(8.764μm vs.4.835μm)和平均晶界角度,显著提高了低角度晶界数目分数(0.410 vs.0.658)和电导率(24.6%ICAS vs.26.3%ICAS),降低了硬度(228.2 HV vs.227.0 HV)、屈服强度(680.3 MPa vs.662.5 MPa)、抗拉强度(714.5 MPa vs.695.5 MPa)和伸长率(7.6%vs.5.6%),提高了抗晶间腐蚀和抗剥落腐蚀性能;定量分析显示,预回复处理轻微降低了合金位错强化、低角度晶界强化和高角度晶界强化的总强化,合金强度的降低主要归因于合金固溶强化和时效沉淀析出相强化的总强化的降低;抗腐蚀性能的提高可以归因于合金低角度晶界数目百分比的提高。  相似文献   

2.
基于常规热轧工艺对喷射成形高镁铝合金挤压坯进行单道次大应变热轧变形,采用透射电镜(TEM)、扫描电镜电子背散射成像技术(EBSD)和X衍射(XRD)方法来分析合金微观结构,并对比研究合金的力学性能。结果表明:喷射成形高镁铝合金在热轧变形过程中,随着变形程度的增大,位错密度显著增大,位错胞、非平衡小角度晶界(LAGB)及亚晶显著增多;当热轧变形80%时,高位错密度晶粒中的小角度晶界转变为大角度晶界(HAGB),亚微米级动态再结晶晶粒大量形成,晶粒组织显著细化,合金的室温拉伸强度和伸长率分别为619 MPa和19.8%。喷射成形高镁铝合金大应变热轧变形过程中的主要强化机制是细晶强化、位错强化和固溶强化,对变形80%合金屈服强度的贡献值分别为120 MPa、208 MPa和158 MPa,共占总强度值的94.4%。  相似文献   

3.
采用硬度与电导率测试、拉伸试验、晶间腐蚀和剥落腐蚀试验并借助X射线衍射(XRD)、扫描电镜(SEM)、电子背散射衍射(EBSD)等方法,研究了预回复退火对Al-11.5Zn-3.5Mg-2.3Cu-0.24Zr铝合金挤压材固溶-T652处理组织与性能的影响。结果表明:与未经预回复退火相比,预回复退火可有效抑制合金的再结晶,细化晶粒尺寸,降低平均晶界角度,显著提高低角度晶界百分比;预回复退火能够保持同等抗拉强度的情况下,提高该合金的屈服强度和抗腐蚀性能;位错强化和低角度晶界强化是合金屈服强度提高的主要因素。  相似文献   

4.
基于常规热轧工艺对喷射成形高镁铝合金挤压坯进行单道次大应变热轧变形,采用透射电镜(TEM)、扫描电镜电子背散射成像技术(EBSD)和X衍射(XRD)方法来分析合金微观结构,并对比研究合金的力学性能。结果表明:喷射成形高镁铝合金在热轧变形过程中,随着变形程度的增大,位错密度显著增大,位错胞、非平衡小角度晶界(LAGB)及亚晶显著增多;当热轧变形80%时,高位错密度晶粒中的小角度晶界转变为大角度晶界(HAGB),亚微米级动态再结晶晶粒大量形成,晶粒组织显著细化,合金的室温拉伸强度和伸长率分别为619 MPa和19.8%。喷射成形高镁铝合金大应变热轧变形过程中的主要强化机制是细晶强化、位错强化和固溶强化,对变形80%合金屈服强度的贡献值分别为120 MPa、208 MPa和158 MPa,共占总强度值的94.4%。  相似文献   

5.
通过多向锻造工艺制备Ti2AlNb基合金(B2+O)相区内800℃不同变形道次的试样,水冷冷却后切取中心部位样品,利用电子背散射衍射和X射线衍射技术,分析多向锻造道次对Ti2AlNb钛合金组织演变的影响。结果表明,Ti2AlNb基合金经(B2+O)相区多向锻造变形后获得显著细化的等轴组织,但随着变形道次增加,晶粒尺寸快速降低后趋于平稳,同时变形促进小角度晶界向大角度晶界发生转化;变形后合金相组成主要为B2+O,以及部分残留ɑ2相,相比初始组织ɑ2相减少、O相增多;变形后微观应变和位错密度大幅增加,在动态回复作用下,随着锻造道次增加,微观应变增幅逐渐减小,位错密度略有减小。  相似文献   

6.
采用X射线衍射分析(XRD)、电子背散射衍射分析(EBSD)、电导率测试、硬度测试、晶间腐蚀试验和剥落腐蚀试验,研究了预回复固溶时效处理前的热机械加工(Thermo-mechanical processing,TMP)对超高强铝合金Al-13.01Zn-3.16Mg-2.8Cu-0.2Zr-0.07Sr组织及性能的影响。结果表明,TMP(450℃/2 h+460℃/2 h+470℃/2 h(水淬)固溶、400℃/24 h过时效、约45%压缩量)处理后降低了合金的位错密度(0.150→0),减小了平均晶粒尺寸(6.256μm→5.012μm)和平均晶界角度,显著提高了低角度晶界数目百分比(0.618→0.700),电导率(25.3%IACS→27.2%IACS)和伸长率(8.1%→8.2%)基本未发生变化,降低了硬度(229.6 HV→221.0 HV)、屈服强度(653.8 MPa→599.5 MPa)、抗拉强度(701.9 MPa→646.3 MPa),提高了抗晶间腐蚀和抗剥落腐蚀性能。定量分析显示,热机械加工轻微提高了合金位错强化、低角度晶界强化和高角度晶界强化的总强化,合金强度的降低主要归因于合金固溶强化和时效沉淀析出相强化的总强化的降低。抗腐蚀性能的提高可以归因于合金低角度晶界数目百分比的提高。  相似文献   

7.
研究了经过轧制驱动等通道转角大应变加工的商业纯铝的强化机理。基于XRD分析和Taylor公式的定量计算说明,轧制驱动ECA大应变CP Al的内部位错密度很低。通过晶体微区取向分析技术(EBSD)对大应变材料内部的小角度界面和大角度界面进行表征,发现材料内部大多数是小角度晶界;基于Hall-Petch关系对大应变纯铝的强化机理进行定量分析,得出其强化主要来自于小角度晶界强化。  相似文献   

8.
在所研究的Fe3Al,Fe3Si,FeAl,Ni3Al,NiAl和TiAl等金属间化合物中均发现大晶粒超塑性。显微分析表明,超塑性变形过程中晶粒明显细化;电子背散射衍射(EBSD)技术和透射电子显微学(TEM)分析表明,大晶粒金属问化合物超塑变形过程中形成了大量亚晶界网络,且随变形量增大.亚晶界不断吸收晶内滑动位错,使其位向差不断增大,从而逐渐演变成小角度和大角度晶界,即超塑性变形过程中产生了连续动态回复与再结晶(CDRR)。高温塑性变形是通过位错的滑移和攀移进行的,而亚晶界的迁移、滑动和转动起到协调变形的作用,保持了材料在宏观上的超塑性。  相似文献   

9.
采用X射线衍射分析(XRD)、电子背散射衍射分析(EBSD)、电导率测试、硬度测试、拉伸试验、晶间腐蚀试验和剥落腐蚀试验,研究了固溶冷变形-预回复对超高强铝合金Al-13.01Zn-3.16Mg-2.8Cu-0.204Zr-0.0757Sr固溶组织、时效及性能的影响。结果表明,预回复对固溶冷变形态下超高强铝合金的性能改善作用不大。相比固溶—冷压缩—固溶—时效和固溶—冷压缩—预回复—固溶—时效工艺,合金在固溶—冷压缩—时效工艺下具有更优秀的平均晶粒尺寸,硬度、低角度晶界比例、抗拉强度、屈服强度和抗晶间腐蚀性能。其中固溶—冷压缩—时效工艺下合金的屈服、抗拉强度达到了683.2 MPa、734.7 MPa,伸长率为6.1%,且晶间腐蚀深度为23.81μm,晶间腐蚀等级为二级。相比另外两种工艺,该工艺下合金屈服强度的贡献主要是来自位错强化和低角度晶界强化。  相似文献   

10.
通过光学显微镜(OM)、透射电子显微镜(TEM)、X射线衍射(XRD)等检测方法,研究等通道转角挤压变形后Ti-1300合金的组织与性能。研究结果表明:Ti-1300合金经过ECAP变形,发生晶粒转动、晶内多系滑移以及晶界处螺型位错与刃型位错的混合位错交错排列的协调作用,致使晶界不能破碎,原始晶界清晰可见,晶内出现大量的相互交错的剪切滑移带,显微组织中存在大量平行细密的板条组织以及位错团、位错胞,位错密度增大,但在整个ECAP变形过程中并未产生形变诱导ω或α″相。织构分析结果表明ECAP变形过程中Ti-1300合金初始(110)■织构逐渐转变为α织构,并形成D织构及立方织构。  相似文献   

11.
借助拉伸试验、维氏显微硬度测试、TEM与EBSD等表征手段,研究了限制模压变形道次与变形后退火对纯铝板材微观组织与力学性能的影响规律。经过多道次的限制模压变形,材料晶粒尺寸由初始退火态的约30μm细化至亚微米级,强度、硬度显著提高。在回复阶段变形材料出现退火强化现象,且在300℃退火时仍保持良好的热稳定性。超细晶材料的退火强化现象主要由晶界位错源抑制强化引起,并与退火温度和应变累积量密切相关。材料晶粒组织在变形及退火过程中主要以小角度晶界为主,且应变累积的不均匀性始终存在。变形后期表面微裂纹的出现对材料的力学性能造成不良影响。2道次模压变形板材在300℃下退火1 h后的综合性能最优。  相似文献   

12.
室温下对纯铝高压扭转10圈,通过电子背散射衍射分析技术(EBSD)研究了高压扭转纯铝的微观组织及晶界结构。结果表明:变形后纯铝的晶粒尺寸细化至250~1200 nm之间,尺寸200~700 nm区间的晶粒最多,占统计晶粒数的76%,平均晶粒尺寸为530 nm,为典型的超细晶组织。经过仔细观察,在极个别细小的超细晶组织周围发现了晶粒尺寸大于1000 nm的粗大晶粒,但就整体而言,变形后纯铝的晶粒分布较为均匀。纯铝高压扭转后大角度晶界占所有晶界的81%,小角度晶界占19%,大角度晶界数量明显高于小角度晶界,这表明变形过程中发生了动态再结晶。纯铝变形后低重位点阵晶界占29. 14%,其中∑3晶界占7. 2%,以非共格孪晶界为主。  相似文献   

13.
在Gleeble-1500热模拟试验机上,对添加Zr元素的Al-Zn-Mg-Cu合金在300~450℃和0.000 5~1.000s-1变形下进行热压缩试验。采用金相显微观察(OM)、电子背散射衍射分析(EBSD)和透射电镜分析(TEM)测试技术,研究了不同热变形工艺下合金的显微组织演变规律。结果表明,随着变形温度的升高和应变速率的降低,合金的位错密度降低,亚晶尺寸增加,峰值应力减小。在热变形工艺条件下,合金组织主要由小角度晶界构成,动态软化机制主要为动态回复。在AlZn-Mg-Cu合金中添加Zr元素,生成了大量尺寸为10~25nm的弥散共格Al3Zr粒子,该粒子在热变形过程中有效钉扎位错和亚晶界,抑制热变形过程中再结晶的发生,是热变形条件下仍保持动态回复组织的原因。  相似文献   

14.
胡静  林栋梁 《金属学报》2004,40(5):489-493
原始平均晶粒尺寸约为200μm的单相Ni-48Al金属间化合物在温度为1025—1100℃、应变速率为1.25×10~(-4)—2.00~10~(-3)s~(-1)范围内呈现超塑性。在1100℃、应变速率为1.125×10~(-3)s~(-1)时,最大延伸率可达188.2%。金相分析表明,超塑性变形过程中晶粒明显细化;电子背散射衍射分析(EBSD)和透射电子显微术(TEM)观察表明,超塑变形过程中形成了大量亚晶界网络,且随变形量增大,亚晶界及小角晶界比例不断增加。亚晶界由位错墙和位错网络构成,不稳定的亚晶界在超塑性变形过程中不断吸收晶内滑移和攀移位错,亚晶界位错密度不断增加,取向差不断增大。伴随亚晶界的滑移和迁移及亚晶的转动,部分亚晶界转变为小角度晶界,并进而转变为大角度晶界,即在超塑性变形过程中发生了连续动态回复与再结晶(CDRR)。  相似文献   

15.
含钪7xxx系铝合金的再结晶   总被引:1,自引:0,他引:1  
采用金相显微镜和透射电子显微镜研究了含钪Al-Zn-Mg-Cu-Zr系铝合金组织的再结晶,测试了不同温度下退火1h合金的硬度。结果表明:含0.20%Sc的7xxx系铝合金(冷变形量50%)的再结晶起始温度为475℃,再结晶终了温度为525℃。合金在均匀化以及热加工过程中析出细小、弥散的二次A l3(Sc,Zr)粒子钉扎位错、亚晶界和晶界,使回复过程中的位错运动受阻,保持基体内较高的位错的密度,阻碍加热时位错重新排列呈亚晶界以及更进一步发展成大角度晶界的过程;阻碍了再结晶核心长大过程,阻碍大角度晶界的迁移,从而提高再结晶温度。  相似文献   

16.
通过光学显微镜(OM)观察、拉伸试验、XRD及EBSD检测分析,研究了预回复退火对7085铝合金微观组织性能的影响,并对其强化机理进行了初步研究。结果表明,预回复退火处理可有效细化7085型铝合金挤压材晶粒尺寸,抑制再结晶,提高拉伸力学性能;强度提高归因于低角度晶界及位错强化。  相似文献   

17.
采用剧塑性变形工艺(等通道转角挤压和轧制)以及随后的短时间退火制备高性能Mg-Li合金,通过显微组织观察、扫描电镜分析、X射线衍射仪测试和室温拉伸测试等研究变形前后合金组织、力学性能及强化机制。结果表明:合金铸态晶粒粗大,主相为β相,α相分布于β相的晶界以及晶内;同时,晶内存在大量Al2Y和AlLi析出相。由于动态回复作用显著,合金变形时并未发生明显的动态再结晶现象;经短时间退火后,合金组织发生完全再结晶,其晶粒细化至27.1μm(12pra工艺,即等通道转角挤压、轧制及退火)。铸态合金的抗拉强度和伸长率分别为131.1 MPa和47.1%;经12pr(等通道转角挤压及轧制)变形后,合金的伸长率达到90.5%,而抗拉强度稍有提高,这主要受位错协调变形及动态回复作用的影响;退火后合金的伸长率显著降低而强度提高至237.6 MPa(12pra),出现退火致强化现象,其主要的机制是有限位错源强化及晶界强化。  相似文献   

18.
工业纯铝在冷轧大变形过程中,屈服强度随应变量的增加先上升后降低.强度在等效应变为3.3时(εvM=3.3)达到峰值,之后随着压下量进一步增加,其强度反而下降,即出现了变形致软化的现象.透射电子显微镜观测两科样品(εvM=3.3和εvM=4.1)发现,造成这一现象的主要原因是材料内部微观结构不同.εvM=4.1的样品微观结构为冷轧大变形之后典型的层状结构;而εvM=3.3的样品中除含有典型层状结构之外,还包含近似等轴晶的区域,该区域中小角度晶界比例以及位错密度较高.通过理论计算位错强化与细晶强化的贡献,发现εvM=3.3的样品强度高于εvM=4.1的样品,与实验结果一致.  相似文献   

19.
对高镁Al-10Mg合金分别做了固溶与时效处理,固溶工艺为673 K、24 h,固溶后的高温时效工艺为573 K、24 h,并对固溶及时效态试样分别进行了两道次压缩实验。通过OM、XRD、EPMA、EBSD等分析表征手段,研究了时效析出的b相对高镁Al-10Mg合金热变形过程中的力学性能及微观组织演变的影响。结果表明,时效处理后晶粒内部析出了均匀分布的b相,两道次压缩实验后时效态试样的应力-应变曲线始终处于固溶态试样曲线的下方。第一道次压缩实验中时效态试样的硬化率低于固溶态试样的硬化率,在回复过程中固溶Mg原子对形变强化起主要作用;第二道次压缩实验中时效态试样的硬化率高于固溶态试样的硬化率,时效态试样内部的位错累积更显著并且更早地出现了再结晶软化。时效态试样压缩组织内残余了更多的形变储能,使b相激发出更多的小角度晶界,进而将变形晶粒基体切割成若干区块,促进了再结晶形核,从而细化了再结晶晶粒。时效态压缩组织各区块的Schmid因子分布更均匀,在后续变形过程中能承受更多的塑性变形。再结晶形核不再局限于晶界凸出(bulging)形核,再结晶晶粒不再具备典型的再结晶织构特性,各向异性被弱化。b相阻碍了位错的滑移,将部分变形储能累积在沉淀相周围的小角度晶界处,减少了滑移到变形晶粒晶界处的位错数量,从而减缓了变形晶粒晶格的旋转,使变形晶粒含有{001}和{101}2种面织构组分。  相似文献   

20.
通过低温冷却+轧制变形的方法研究了高强7050铝合金的低温塑性变形及其对合金组织性能的影响。结果表明,高强7050铝合金经液氮冷却预处理后可实现与温/热轧相比较高的轧制变形加工量,并产生大量亚结构和高密度位错,使合金显著强化,其中低温下的高变形能力主要与合金在低温下具有高的加工硬化能力密切相关,而强度提升主要来自于固溶强化和变形位错强化的贡献。虽然超低温变形能够明显加快淬火态高强7050铝合金的时效进程,但直接时效处理可使超低温变形态7050铝合金保有较高的强度和一定延伸率,其中析出和位错强化是其强化主因,而时效引起的回复和强化相析出共同促进延伸率的改善。淬火态高强7050铝合金在室温变形过程中,形变热引起基体中析出的溶质原子团簇(或GP区)和η′相与变形位错发生交互作用,导致大量剪切带(失稳区)形成,从而易引发轧板开裂或边裂,而超低温变形过程中溶质扩散受阻以致强化相析出被抑制,从而明显降低了剪切失稳区的发生,使合金能够获得均匀、稳定的塑性变形或良好的加工硬化,确保获得较高质量的超低温轧板。高强铝合金在低温下所表现出来的优异塑性变形和加工能力有望成为改善高强铝合金难变形加工的有效途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号