首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《铸造技术》2017,(1):84-87
采用脉冲电镀法在Q235钢表面制备了Ni-Cr-Mo合金镀层。利用辉光放电光谱仪、扫描电镜、Tafel曲线和电化学阻抗谱考察了尿素含量对镀层元素含量、沉积速率、表面形貌和耐蚀性的影响。结果表明,随尿素含量的增大,镀层镍含量先增大后缓慢减小,铬含量先增大后减小、钼含量先减小后增大;镀层沉积速率先增大后减小;镀层表面颗粒尺寸减小;镀层在3.5%NaCl溶液中耐蚀性先增强后减弱。尿素含量为60 g·L~(-1)时制备的镀层具有最大的自腐蚀电位(-0.535 V)、最小的腐蚀电流密度(0.123μA·cm~(-2))和最大的电荷转移电阻(2 550Ω·cm~2),耐蚀性最好。  相似文献   

2.
为了提高低碳钢在海洋环境下的耐蚀性,采用脉冲电沉积技术在Q235钢表面成功沉积出Sn-Zn-Mn镀层。利用辉光放电光谱仪(GDS)、扫描电镜(SEM)、塔菲尔(Tafel)极化曲线和电化学阻抗谱(EIS)考察了施镀时间对元素成分、镀速、表面形貌、阴极电流效率和耐蚀性的影响。结果表明:随施镀时间的增加,w(Sn)和w(Zn)减小,w(Mn)增大;镀速和沉积电流效率呈先增大后减小的趋势;镀层胞状颗粒尺寸增大;耐蚀性先提高后降低。施镀时间为30 min时,所得Sn-Zn-Mn镀层表面平整光滑、组织均匀致密,在3.5%Na Cl腐蚀液中具有最正的E_(corr)值(-0.394 V)、最低的I_(corr)值(1.585×10~(-8)A·cm~(-2))和最大的R_(ct)值(8653Ω·cm~2),耐蚀性最好。  相似文献   

3.
采用脉冲电镀法在Q235钢表面制备Ni-Cr-Mo合金镀层。利用辉光放电光谱仪(GDS)、扫描电镜(SEM)、Tafel曲线和电化学阻抗谱(EIS)考察了p H值对镀层元素含量、沉积速率、表面形貌和耐蚀性的影响。结果表明:随着p H值的增大,镀层中镍含量先减小后增大,铬先增大后减小,钼含量减小;镀层沉积速率先增大后减小;在3.5%Na Cl溶液中,镀层耐蚀性先增强后减弱。p H值为3.5时,镀层均匀致密,具有最大的自腐蚀电位(-0.535V)、最小的腐蚀电流密度(0.123μA·cm~(-2))和最大的电荷转移电阻(2550Ω·cm~2),此时镀层耐蚀性最好。  相似文献   

4.
采用脉冲电镀法在Q235钢表面制备Ni-Cr-Mn合金镀层。利用辉光放电光谱仪(GDS)、扫描电镜(SEM)、Tafel曲线和电化学阻抗谱(EIS),考察了添加剂对镀层元素含量、沉积速率、镀层外观、表面形貌和耐蚀性的影响。结果表明:随添加剂含量的增大,镀层中镍含量降低,铬、锰含量增加;沉积速率先增大后减小;镀层外观光亮度先升高后降低;晶粒尺寸先减小后增大;在3.5%Na Cl溶液中,镀层耐蚀性先增强后减弱。添加剂含量为10 ml/L时,镀层致密均匀,具有最大的腐蚀电位(-0.363 V)、最小的腐蚀电流密度(8.829×10-8A·cm~(-2))和最大的电荷转移电阻(2737Ω·cm~2),耐蚀性最好。  相似文献   

5.
柠檬酸铵浓度对脉冲电镀Ni-Cr-Mo合金镀层的影响   总被引:1,自引:2,他引:1  
目的揭示柠檬酸铵浓度对脉冲电镀Ni-Cr-Mo合金镀层元素含量、沉积速率、表面形貌和耐蚀性的影响规律。方法采用脉冲电镀法在Q235钢表面制备Ni-Cr-Mo合金镀层,利用辉光放电光谱仪、扫描电镜、Tafel曲线和电化学阻抗谱考察柠檬酸铵浓度对镀层元素含量、沉积速率、表面形貌和耐蚀性的影响。结果随柠檬酸铵浓度的增大,镀层镍含量减小,铬、钼含量增大,镀层沉积速率减小,镀层表面颗粒的尺寸减小,镀层在3.5%Na Cl溶液中的耐蚀性先增强后减弱。结论柠檬酸铵质量浓度为196 g/L时,镀层具有最大的自腐蚀电位(-0.537 V)、最小的腐蚀电流密度(0.313μA/cm~2)和最大的电荷转移电阻(2075?·cm~2),耐蚀性最好。  相似文献   

6.
采用直流、单脉冲和换向脉冲三种不同电沉积方式在Q235钢表面电镀制备Ni-Cr-Mn合金镀层。利用辉光放电光谱仪、形状测量激光显微系统、Tafel曲线和电化学阻抗谱,研究了电沉积方式对镀层元素含量、沉积速率、3D形貌和耐蚀性的影响。结果表明:按照直流、单脉冲和换向脉冲的顺序,镀层中镍含量减小,铬、锰含量增大,沉积速率先增大后减小,表面粗糙度降低,耐蚀性增强。直流方式制备的镀层表面存在个别较大的颗粒,单脉冲方式制备的镀层表面颗粒大小较为均匀,但仍存在个别较大颗粒,换向脉冲方式制备的镀层总体均匀致密。换向脉冲方式制备的镀层表面粗糙度最低,在3.5%NaCl溶液中,该镀层具有最大的腐蚀电位(-0.305 V)、最小的腐蚀电流密度(7.467×10~(-8)A·cm~(-2))和最大的电荷转移电阻(5972Ω·cm~2),耐蚀性最佳。  相似文献   

7.
采用脉冲电镀法在Q235钢表面制备Zn-Ni-Mn合金镀层。利用辉光放电光谱仪(GDS)、扫描电镜(SEM)、塔菲尔(Tafel)曲线和电化学阻抗谱(EIS)研究了施镀时间对合金镀层元素含量、沉积速率、表面形貌及耐蚀性的影响。结果表明:随施镀时间的延长,镀层中锌、镍含量降低,锰含量升高;镀层沉积速率增大;镀层耐蚀性先增强后减弱。施镀时间20 min所得镀层均匀致密,耐蚀性最佳。在最佳施镀时间20 min下所制备的Zn-Ni-Mn合金镀层与Zn-Ni合金镀层相比,其自腐蚀电位更正,自腐蚀电流密度更低,具有更加优异的耐蚀性。  相似文献   

8.
采用脉冲电镀技术在Q235钢表面沉积制备Ni-Sn-Mn合金镀层,通过正交试验方法对工艺参数进行了优化。利用辉光放电光谱仪(GDS)、扫描电镜(SEM)、X射线衍射仪(XRD)、Tafel曲线和EIS谱考察镀层元素含量、镀速、表面形貌、相结构及耐蚀性。结果表明:脉冲电镀Ni-Sn-Mn镀层最佳工艺参数为:镀液温度30℃,电流密度10 A·dm~(-2),施镀时间30 min,p H值4.0。最佳工艺条件下所得镀层为非晶态结构,表面球胞颗粒均匀致密,Ni、Sn、Mn的质量分数为68.59%、22.17%、9.24%。与Ni-Sn镀层相比,Ni-Sn-Mn镀层在3.5%Na Cl腐蚀液中的E_(corr)值(-0.346 V,vs Al/Ag Cl电极)更正,I_(corr)值(2.518×10~(-8)A·cm~(-2))更低,R_(ct)值(11 265Ω·cm~2)更大,耐蚀性更好。  相似文献   

9.
为了提高低碳钢在海洋环境中的耐蚀性,采用脉冲电沉积技术在Q235钢表面制备Ni-Sn-Mn合金镀层,通过正交试验方法对镀液组分进行优化。利用扫描电镜(SEM)及附带的能谱仪(EDS)、X射线衍射仪(XRD)、Tafel曲线和电化学阻抗谱(EIS)等方法对镀层表面形貌、元素含量、相结构及耐蚀性进行分析。结果表明:脉冲电沉积Ni-SnMn镀层最优镀液组分为:10 g/L SnCl_2·2H_2O、55 g/L NiSO_4·6H_2O、50 g/L MnSO_4·H_2O和160 g/L Na_3C_6H_5O_7·2H_2O。最优镀液组分条件下制备的镀层为非晶态结构,镀层表面胞状颗粒均匀致密。镀层中Ni、Sn、Mn的质量分数分别为68.59%、21.57%、9.84%。与Ni-Sn镀层相比,Ni-Sn-Mn镀层在3.5%NaCl溶液中的自腐蚀电位(-0.346 V)更正,自腐蚀电流密度(2.816×10~(-8) A/cm~2)更低,电荷转移电阻(12 580Ω·cm~2)更大,耐蚀性更好。  相似文献   

10.
通过脉冲电镀技术在Q235钢基体上制备出Zn-Ni-Mn合金镀层。研究了电流密度对镀层表面形貌、成分、沉积速率及耐蚀性的影响。结果表明,随着电流密度的增大,沉积速率先增大再减小;镀层中锰含量升高,锌、镍含量降低。随电流密度增加,该镀层随耐蚀性先增强后减弱。电流密度为3.0 A·dm~(-2)时,所得Zn-Ni-Mn合金镀层平整致密,耐蚀性最好。Zn-Ni-Mn合金镀层在3.5%NaCl溶液中的耐蚀性比在5.0%NaOH溶液中更好。  相似文献   

11.
雷钰  闫莹雪  田晓东 《表面技术》2018,47(2):231-235
目的研究电镀工艺参数中的电流密度和施镀温度对铝合金表面Ni-Si C-MoS_2复合镀层组织形貌及成分的影响。方法利用复合电镀的方法在铝合金上制备Ni-Si C-MoS_2复合镀层。通过扫描电子显微镜、能谱仪以及显微硬度仪,分析不同电流密度和施镀温度下复合镀层的组织结构、成分、界面之间的结合情况以及显微硬度。结果电流密度为4 A/dm2时,镀层与基体的结合差,镀层表面粗糙不平;当电流密度增加到5 A/dm2时,镀层与基体结合紧密,并且镀层表面平整;当电流密度增大到6 A/dm2时,镀层表面平整度变差。施镀温度为40℃时,镀层厚度较薄;施镀温度为50℃时,镀层与基体结合良好,镀层表面平整;当施镀温度上升到60℃时,镀层与基体结合处出现裂纹,镀层质量下降。随电流密度和施镀温度的升高,镀层中Si C和MoS_2摩尔分数先增加后减小,显微硬度先增大后减小。结论采用复合电镀的方法在铝合金表面可以制备出Ni-Si C-MoS_2复合镀层,当电流密度为5 A/dm2、施镀温度为50℃时,制备出的Ni-Si C-MoS_2复合镀层表面平整,厚度均匀,Si C与MoS_2摩尔分数可分别达到10.40%和0.77%。复合镀层的显微硬度与其Si C含量成正比,最高可达357.7HV0.01,是基体合金硬度的3.7倍。  相似文献   

12.
在化学镀液中添加Nd3+,研究其浓度对Ni-P镀层与烧结Nd-Fe-B磁体的结合力和施镀后磁体耐蚀性的影响.测定添加不同浓度Nd3+镀液中所得Ni-P镀层与磁体的结合力,以及镀层在3.5%NaCl(质量分数,下同)溶液中的极化曲线,并结合中性盐雾实验表征施镀后磁体耐蚀性.结果表明,添加2.5 g·L-1Nd3+时,Ni-P镀层与Nd-Fe-B磁体的结合力从6.4 MPa提高至25.2 MPa:施镀后磁体的自腐蚀电位从-0.382 V升高到-0.148 V,自腐蚀电流密度从4.52μA·cm-2降低到0.07μcm-2,耐盐雾腐蚀时间达到256 h,磁体耐蚀性显著提高.  相似文献   

13.
热浸镀制备了6种不同成分的Zn-Al-Mg和Zn-Al-Mg-RE合金镀层,并对镀层的厚度、硬度、表面和截面的组织结构、耐蚀性进行了分析,研究了Mg、RE元素对热浸镀Zn-Al-Mg合金镀层组织和性能的综合影响。结果表明:添加RE后,合金镀层的厚度减小。镀层的厚度随着镁含量的减小而呈现增大。一部分合金镀层的硬度因稀土和镁含量的增大而增大。Mg和RE的添加使镀层组织细化,镀层质量优化。镀层耐蚀性也随着Mg和RE的添加而增强。  相似文献   

14.
用电沉积方法在铜表面制备了Ni-ZrO2纳米复合镀层。研究了工艺参数对复合镀层的硬度、耐磨性、耐蚀性的影响。结果表明,镀层硬度随阴极电流密度、镀液温度的增大均呈现先增大后减小的趋势;而随镀液中纳米ZrO2的添加量增加,镀层的硬度逐渐增大;镀层的耐磨性随这几个工艺参数的增加先增加后减小;镀层的耐蚀性随着电流密度的升高先下降再升高,随着镀液中纳米ZrO2添加量、镀液温度的增加,镀层的耐蚀性先升高再下降。本工作中最佳的工艺参数为纳米ZrO2添加量8g/L,阴极电流密度3A/dm2,镀液温度50℃左右。  相似文献   

15.
通过电沉积法在纯铜表面制备Ni-Mo-C合金镀层,采用能谱仪(EDS)、扫描电镜(SEM)、线性伏安扫描法(LSV)和电化学阻抗谱(EIS)等方法研究了镀液pH值对Ni-Mo-C合金镀层元素组成、沉积速率、表面形貌及析氢性能的影响。结果表明:随着镀液pH值的增大,镀层中Ni、C的含量先减小后增大,Mo的含量先增大后减小;当镀液pH=4.5时,电沉积速率最大;能量因素和几何因素的优化均可增强合金镀层的析氢性能,能量因素对析氢性能的促进作用大于几何因素;当镀液pH=4.5时,镀层中Mo含量最大,吸附氢的脱吸附能力最强,析氢性能最好。  相似文献   

16.
采用电沉积法在纯铜基体上制备了银-石墨复合镀层,研究了镀液搅拌速率对银-石墨复合镀层耐蚀性和耐磨性的影响。结果表明:随着搅拌速率的增大,复合镀层中石墨的含量先增大后减小,自腐蚀电流密度和自腐蚀电位呈现先增大后减小的趋势,但整体变化幅度不大;搅拌速率为320~920r/min时,随着搅拌速率的增大,复合镀层摩擦因数增大,磨损率增大。考虑到工业生产要求,最佳搅拌速率为420r/min,此时制备的复合镀层的磨损率可低至8.13×10~(-14) m~3/(N·m)。  相似文献   

17.
温度对化学镀 Ni-P 合金层形貌、硬度及耐蚀性的影响   总被引:5,自引:5,他引:0  
金永中  杨奎  曾宪光  倪涛  丁松 《表面技术》2015,44(4):23-26,31
目的揭示在70~95℃施镀温度范围,Ni-P合金镀层显微形貌的变化规律,并探讨表面形貌结构、合金硬度及耐蚀性能的相关性。方法以施镀温度为变量,通过化学沉积的方法制备Ni-P合金镀层。对镀层表面形貌进行表征,测试镀层硬度,并采用盐酸为腐蚀介质进行浸泡,以相对腐蚀速率表征镀层的耐蚀性。结果在70~95℃的施镀温度范围内,随着温度升高,镀层形貌先趋于致密和平整,而后表面粗化,镀层的硬度和耐蚀性均呈现先提高、后降低的趋势。最佳镀层形貌和硬度值出现在85℃,耐蚀性最好的施镀温度区间为85~90℃。结论当镀液p H值为4.5±0.1,施镀时间为3 h时,施镀的最佳温度为85℃。此条件下制备的镀层表面平整且均匀致密,硬度高,耐蚀性能优异。  相似文献   

18.
采用扫描电子显微镜(SEM)和能谱仪(EDS)研究了化学镀及腐蚀时间对镍铜磷镀层组织和耐蚀性影响。结果表明,延长化学镀时间,镍铜磷镀层由球形颗粒逐渐转变为等轴状和长条形胞状组织,镀层中镍、磷含量按对数规律增大,铜含量在化学镀10 min时达到最大;随腐蚀时间延长,镀态镍铜磷腐蚀速率按线性规律增大,热处理态镍铜磷腐蚀速率具有极小值;长时间腐蚀后,镀态镍铜磷镀层表面呈"菜花状",热处理态镍铜磷表面为多孔结构,腐蚀时间对化合物膜成分影响较小;镍铜磷的腐蚀电流密度随腐蚀时间延长而增大,阻抗值则减小。  相似文献   

19.
通过向Ni-P镀液中添加TiO_2溶胶(2~11mL/L)的方法在AZ31B镁合金表面制备了Ni-P-TiO_2复合镀层。用电化学方法评价了复合镀层在3.5%(质量分数)NaCl溶液中的腐蚀行为;用扫描电镜(SEM)、透射电镜(TEM)和X射线衍射仪(XRD)分析了Ni-P-TiO_2复合镀层的微观形貌和显微组织结构;用维氏硬度仪测试了Ni-PTiO_2复合镀层的显微硬度。结果表明:随着TiO_2溶胶含量的增加,复合镀层组织中菜花状胞状颗粒的尺寸逐渐减小,硬度和耐蚀性均是先增大后减小;当TiO_2含量为8mL/L时,镀层的结构致密,且无明显缺陷和裂纹产生,其显微硬度和耐蚀性均达到最高;Ni-P-TiO_2复合镀层有明显的点蚀电位,说明镀层在腐蚀介质中形成了钝化层,对镁合金起到更好的保护作用。  相似文献   

20.
采用脉冲电镀法在Q235钢表面制备Ni-Cr-Mo合金镀层。利用辉光放电光谱仪(GDS)、扫描电镜(SEM)和Tafel曲线考察了占空比对镀层元素含量、沉积速率、表面形貌和耐蚀性的影响。结果表明:随占空比的增大,镀层镍、钼含量增大,铬含量减小,沉积速率减小;在3.5%Na Cl溶液和6.0%Fe Cl3溶液中,耐蚀性减弱。相比于6.0%Fe Cl3溶液,镀层在3.5%Na Cl溶液中耐蚀性更好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号