首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
稀土金属Y对Cu-Cr合金硬度和导电率的影响   总被引:5,自引:1,他引:5  
研究了稀土金属Y不同添加量和不同固溶时效处理工艺对Cu0.8Cr合金硬度和导电率的影响。结果表明,铸态Cu0.8Cr合金的硬度随Y含量的增加而升高;经过不同固溶时效后,硬度出现波动,其中Cu0.8Cr0.4Y可获得最高硬度。过量的Y能增加硬度,但会降低导电率,经固溶时效处理后导电率最高的合金为Cu0.8Cr0.1Y。  相似文献   

2.
对比研究了Zr添加(0.05,0.15和0.25wt%)对Al-Zr合金固溶态和固溶轧制态时效析出行为、硬度和导电率的影响。结果表明,固溶态Al-Zr合金的晶粒尺寸随Zr含量的增加而减小,但是固溶轧制态Al-Zr合金的晶粒尺寸对Zr添加量不敏感。固溶态Al-Zr合金在350 ℃时效过程中,由于Al3Zr沉淀相的析出,合金硬度随Zr含量增大而增大,但是更强的点阵畸变场则导致导电率降低。而在固溶轧制态合金的时效中,大量变形位错的存在促进了Al3Zr相的析出,Al-Zr合金在250 ℃下时效具有比350 ℃时效更优的硬度和导电率的综合性能。特别是0.25wt%Zr添加的Al-Zr合金,其析出强化可以有效补偿时效过程中位错湮灭引起的硬度降低,保持较高的硬度。综合考虑,固溶轧制态Al-0.25wt%Zr合金经250 ℃时效25 h后具有最优的硬度(47.5 HV0.5)和导电率(55.6%IACS)组合。  相似文献   

3.
对添加微量Zr元素的Cu-0.8Cr-0.05Y(wt%)合金进行冷轧及时效处理,分析了各试样的显微组织、硬度及导电率,研究了热处理后该合金的时效行为.结果表明:适量Zr元素的加入,可细化合金的显微组织.Zr的加入可抑制合金时效过程中Cr析出相的长大,细化Cr析出相,提高合金强度,能有效的保持强度.适量添加量为0.15wt%~0.20wt%,经90%冷轧变形,在480℃时效60 min后,显微硬度可达198 HV,导电率达81%IACS,可获得优良的硬度与导电率匹配的综合性能.  相似文献   

4.
通过中频感应熔炼-铁模浇铸的方法制备了30 mm×100 mm的Cu-Cr-Zr-Ti合金铸锭,采用固溶-时效工艺进行了热处理。使用涡流电导率仪、显微硬度计、金相显微镜、扫描电镜对合金的组织与性能进行了分析。研究表明,大气熔炼的Cu-Cr-Zr-Ti铸态组织中存在树枝状初生Cr相和棒状富Zr相,不同Cr、Zr、Ti含量合金铸态、固溶态显微组织存在较大差异;Ti含量的增加明显降低合金的导电率,提升合金的硬度。  相似文献   

5.
采用硬度计、涡流导电仪、扫描电镜和透射电镜等手段,对铸态和时效态Cu-xCr-0.15Zr(质量分数,%,x=0.8~2.0)合金进行了硬度、电导率和显微组织分析。结果表明,时效态Cu-xCr-0.15Zr合金的硬度和电导率明显高于铸态;当Cr含量从0.8%增加至2.0%时,时效态Cu-xCr-0.15Zr合金的硬度、抗拉强度和电导率都呈先增加后减小的趋势,在Cr含量为1.0%时合金电导率、硬度(HB)和抗拉强度分别为48.37 MS/m、138和617 MPa。这主要与固溶和时效热处理后,Cu-Cr-0.15Zr合金中弥散析出了起第二相强化作用的纳米级CuZr_2相和Cu_5Zr相有关。  相似文献   

6.
先后热轧、固溶处理、冷轧和时效处理Cu-0.81Cr-0.12Zr-0.05La-0.05Y(质量分数)合金,并系统研究其不同阶段的微观结构、显微硬度和导电率的变化规律。合金铸态组织由Cu基体、Cr相和Cu5Zr三相组成。经固溶处理后,Zr相充分溶于Cu基体中,而部分Cr相仍残留于Cu基体中。样品冷轧后的时效处理使Cr与Cu5Zr纳米析出相从基体中析出,且基体显微硬度和导电率增加。在773 K时效60 min后,样品获得了高显微硬度(HV 186)和高导电率(81%IACS)。随着时效温度的提高,Cu晶体的取向度逐渐减小到零,而微应变因存在析出相和位错的相互作用未能得到完全的释放。当共格强化机制在合金中起主要增强作用时,Cr析出相与铜基体之间保持着N-W的位相关系。  相似文献   

7.
通过硬度、导电率测量以及金相分析,研究了直接添加法和合金添加法对触头材料用Cu-Cr-Zr合金性能的影响。结果表明:在真空熔炼条件下,对于同种工艺,随着Zr元素添加量的增加,合金硬度增加,导电率下降。与直接添加法相比,合金添加法有利于减少Zr及Cr元素的烧损;显微组织中富Cu-Zr相主要呈条状连续枝晶状致密分布;颗粒状Cr相在铜基体上的分布相对均匀、致密,得到的Cu-Cr-Zr合金硬度、导电率高一些。  相似文献   

8.
在大气环境下采用普通中频感应电炉熔炼制备了Cu-Cr合金,研究了铬对标准阴极铜组.织与力学性能的影响,Cr的加入量分别为0.30%、0.5 3%、0.76%和0.99%.结果表明,在本实验条件下,Cr可以有效地加入到Cu液中.铸态及固溶时效Cu-Cr合金中只存在α-Cu相与Cr相.铸态时部分Cr溶于基体中,部分Cr以第二相形式存在;固溶时效后基体中可分解析出更多弥散分布的Cr相.Cr元素对纯铜有强化作用,合金的铸态和热处理态试样的拉伸强度及硬度均随Cr元素加入量的增大而增加.固溶时效热处理能有效提高铸态Cu-Cr合金的力学性能.  相似文献   

9.
Cu-Cr-Zr合金时效强化机理   总被引:5,自引:0,他引:5  
研究了不同时效工艺对Cu-0.7Cr-0.13Zr合金硬度、强度和导电率性能的影响,利用透射电镜分析合金时效后的微观形态和析出相。结果表明:在500℃时效30min析出相为Cu5Zr,硬度和导电率可达116.7HV和47%IACS。500℃时效6h后,硬度和导电率为140HV和76%IACS,强度达到峰值430MPa,弥散共格的析出相Cr是强度提高的重要原因,强化效应与采用共格强化机理计算的结果非常接近。合金在500℃时效8h硬度和强度仍具有135.6HV和410MPa,导电率为77%IACS,析出相仍较细小但与基体失去共格关系。  相似文献   

10.
研究了等径角挤压工艺(ECAP)对固溶态CuCrZr合金性能的影响.结果表明,随着挤压道次的增加,合金的硬度迅速上升,导电率略有下降.时效前经ECAP处理可以加速时效初期第二相的析出,使合金的性能以较快的幅度上升.ECAP六道次试样400℃时效1 h,导电率和硬度分别为81.1%IACS和200 HV30.  相似文献   

11.
研究了室温冷轧、低温轧制、低温轧制+中间时效3种不同冷轧方式对时效态Cu-1Cr-0.15Zr合金显微组织和力学性能的影响。结果表明,低温轧制有助于时效态改善Cu-1Cr-0.15Zr合金的硬度,且经过中间时效处理后,时效态Cu-1Cr-0.15Zr合金的硬度和电导率会进一步提高;无论是冷轧态还是时效态,低温轧制+中间时效试样的抗拉强度都高于室温轧制和低温轧制试样,且峰时效态低温轧制+中间时效试样的电导率最高。室温轧制、低温轧制和低温轧制+中间时效试样的磨损体积分别为0.682、0.191和0.054mm~3,时效处理后的低温轧制+中间时效试样的耐磨性最好;其抗拉强度和耐磨性都高于室温轧制和低温轧制试样,这主要与合金中孪晶/基体片层间距较小以及弥散析出的细小壳状富Cr相有关。  相似文献   

12.
采用固溶+冷变形(80%变形量)+不同温度和时间时效工艺制备了Cu-0.33Cr-0.06Zr合金试样,研究了时效温度以及时效时间对Cu-0.33Cr-0.06Zr合金导电率和显微硬度的影响。结果表明,固溶后冷变形加时效可以显著提高合金的导电率和显微硬度。固溶和冷变形后Cu-0.33Cr-0.06Zr合金的合理时效工艺为450 ℃下时效2 h,经此工艺处理后合金的导电率可以达到83 %IACS,硬度达到195 HV0.1。  相似文献   

13.
研究了不同Y含量(0.02%,0.05%,0.10%)对Al-0.16Zr合金铸态、轧制态和时效态的微观组织、硬度和电导率的影响。结果表明,Y含量为0.05%和0.10%时,能显著的细化合金晶粒。随着Y含量增加,晶粒细化效果逐渐增强。铸态Al-0.16Zr合金在350℃时效过程中,Y添加具有显著的时效强化效果,Y含量越高,达到峰值时效所需时间越短。但是由于共格Al3Zr沉淀相的析出,点阵失配畸变场的存在将导致合金电导率降低。而在轧制态合金的时效过程中,位错密度的降低引起退火软化,但是Y的添加仍明显提高了合金的硬度。综合考虑,轧制态Al-0.16Zr-0.10Y合金经350℃×30h时效后具有最优的硬度和电导率。  相似文献   

14.
形变热处理对Cu-Ag-Cr和Cu-Ag-Zr合金组织和性能的影响   总被引:2,自引:2,他引:0  
采用中频熔炼-铁模铸造-热轧-固溶-冷轧-时效处理工艺,制备了Cu—Ag-Cr和Cu—Ag-Zr两种合金板材。通过拉伸力学性能测试、电导率测试、金相和透射电子显微镜观察,研究了固溶-预冷变形-时效对加入微量Cr、Zr的Cu—Ag合金组织和性能的影响。结果表明:在Cu—Ag合金中添加微量Cr和Zr,能显著地提高铜银合金的力学性能,添加Cr时,电导率有-定降低,而添加Zr时,电导率没有明显变化;两种合金较好的形变热处理工艺为时效前进行30%冷变形,然后在450℃下时效4h,在此工艺条件下Cu—Ag-Cr合金的抗拉强度、伸长率、相对电导率分别为397MPa、16.8%和78%IACS,Cu—Ag-Zr合金的抗拉强度、伸长率、相对电导率分别为373MPa、10%和96%IACS;形变热处理能够显著提高研究合金的力学性能而不明显降低电导率,微量Cr、Zr以Cr单质和Cu3Zr粒子的形式在基体中弥散析出,是合金强度提高的主要原因,而纯铜的基体仍使其具有较高的电导率。  相似文献   

15.
高强度高导电性铜-铬合金是一种接触导线用铜合金,含0. 79%Cr、0. 11%Zr、0. 06%La和0. 06%Y(质量分数)。研究了铸态、固溶态、时效态和冷轧后时效态铜-铬合金的显微组织、硬度和导电性能。固溶处理工艺为950℃×60 min水冷,时效温度为400~600℃,时效时间0~360 mm,冷轧变形量20%~80%。结果表明:铸态铜-铬合金的组织为黑色Cr相和含钇和镧的亮白色Cu5Zr相;固溶处理后Cu5Zr相基本回溶于基体,黑色Cr相细小弥散;经60%冷轧变形的合金晶粒沿轧制方向拉长,尺寸约为400μm;时效时间相同,随着时效温度的升高,合金的硬度和电导率均提高;与未经冷轧的时效态铜-铬合金相比,经冷轧变形并时效的合金达到最高电导率的时效时间较短,且冷轧变形60%随后500℃时效60 min的合金硬度明显高于未经冷轧、500℃时效360 min的合金;冷轧变形60%、500℃时效60 min的铜-铬合金中有高密度位错和位错缠结,弥散的纳米级第二相与基体保持共格关系,使合金强化。  相似文献   

16.
采用上引连铸-连续挤压技术制备Cu-0.88Cr-0.14Zr(质量分数)合金,并对挤压后的棒材进行不同制度的时效处理。利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、电子背散射技术(EBSD)等分析测试手段研究合金经不同工艺/制度处理后的组织与性能的变化。结果表明:上引连铸Cu-Cr-Zr合金棒坯在连续挤压过程中发生了剧烈的剪切变形和动态时效,晶粒明显细化,析出尺寸为15~20 nm的Cr相,与铸态相比,挤压态合金的导电率与硬度分别增加了28.6%IACS、49.6 HV。确定了挤压态合金杆材经(925℃,12 h)均匀化退火和(1000℃,1 h)固溶处理后的峰时效制度是(475℃, 3 h),此时基体中析出了平均晶粒尺寸为2.6 nm的Cr相,合金的导电率和硬度分别可达73%IACS、155 HV。  相似文献   

17.
热处理工艺对ITER级CuCrZr合金性能的影响   总被引:1,自引:0,他引:1  
研究了同溶温度、时效温度和时间对ITER级Cu-0.8Cr-0.1Zr合金强化规律的影响和不同工艺下的金相组织,分析了合金导电率随时效温度的变化规律.结果表明:Cu-0.8Cr-0.1Zr合金硬度均随同溶温度、时效温度和时间的增加而呈现出峰值.在950℃同溶、480℃时效3 h后获得最佳硬化效果,硬度值为138 HV0.2.合金经同溶处理后的相对导电率仅为34%IACS,随时效温度的升高,导电率增加,480℃时效处理3 h,导电率达最大值74%IACS.  相似文献   

18.
采用热拉伸方法在100至300℃温度范围内对CuCrZr合金进行处理,实验结果表明:热拉伸处理工艺能成功地制备具有高硬度和一定导电能力的CuCrZr合金。在不同的处理温度下,随着延伸率的增加,所得材料的显微硬度均有所增加,而导电性均有一定程度的降低。通过TEM观察到大量的含Cr沉淀相,且这些沉淀相与Cu基体之间存在Nishiyama-Wasserman位向关系。热拉伸处理后的CuCrZr合金的高显微硬度和可接受的导电性归因于固溶原子析出、位错增殖、晶粒细化以及沉淀强化的共同作用。  相似文献   

19.
采用非真空熔炼工艺制备Cu-Cr-Zr合金,研究了不同温度下时效时间对合金显微硬度和导电率的影响,并分析了在500℃时效时变形量和合金显微硬度与导电率的关系,用扫描电子显微镜(SEM)观察分析了材料的显微组织。结果表明:非真空熔铸的Cu-0.90Cr-0.18Zr合金950℃×1 h固溶后,经过适当的形变和固溶时效处理,显微硬度和导电率都显著增加,分别达到179 HV和79%IACS。时效后固溶在基体中的合金元素大量析出,析出相弥散分布。  相似文献   

20.
采用SEM、EDS、XRD考察了Ti、Zr元素单独或复合添加以及Cu含量对Al-Cu合金显微组织和力学性能的影响。结果表明:与未添加的Al-Cu合金相比,单独添加Ti、Zr元素的合金铸态组织得到了一定细化,且等量Ti的细化效果优于Zr。复合添加Ti、Zr时,Ti显著改善了Zr元素的晶粒细化效果。在添加孕育剂的合金中,增加Cu含量的合金强度均有所降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号