首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对凸轮常见生产方法存在的材料利用率过低、产量低、生产周期长等问题,尝试了轧制成形工艺。基于DEFORM刚塑性有限元法建立了凸轮轧槽不变,只改变辊缝的多道次轧制过程的三维有限元模型。模拟分析总延伸系数不同时轧件的孔型充满度,确定出最佳轧制道次为2;分析坯料直径不同时轧件的孔型充满度及变形均匀性,确定出最佳坯料直径为Φ72 mm。在Ф160 mm×200 mm两辊轧机上验证了在最佳轧制道次和坯料直径下,40Cr凸轮的轧槽不变轧制成形工艺。实验得到轧件横截面组织分布与模拟应变分布规律一致,证明了模拟结果的准确性。  相似文献   

2.
采用轧制工艺生产GH4169合金异型材,结合实验条件,基于有限元模拟软件建立了单轧槽少道次轧制过程的三维刚塑性有限元模型。采用异型坯作为坯料,分析了轧制过程中孔型充满度、变形温度、等效应变和等效应力的分布情况。模拟结果表明,采用Φ160 mm×200 mm轧机时,初轧温度为1070℃,断面收缩率为45%,单轧槽两道次轧制成形,孔型充满度良好,等效应变约为0.3~1.4。结合模拟结果,在轧机上进行了热轧实验,轧件厚度满足尺寸要求,宽度比成品小2 mm,没有发生晶粒细化。这主要是由于多火次、多次数轧制,使得加热引起的晶粒长大程度大于小变形量引起的晶粒细化程度,使得晶粒未细化,宽度不够。  相似文献   

3.
中轧区辊缝调整不当易使轧件在进一步扭转及后续轧制过程中产生表面折叠,为了减少折叠缺陷的产生,确定了高线中轧区合适的宽展模型,在满足孔型充满度条件下计算出辊缝调整的极限区间。参照辊缝调整区间,建立合理的有限元模型,模拟轧件在高线中轧区轧制变形过程,根据模拟结果,分析轧件变形及金属局部流动状况。研究发现,当中轧区辊缝超出调整范围时,金属横向变形过大,轧件容易产生耳子。辊缝调整范围在实际应用后发现可以有效减少表面折叠。  相似文献   

4.
一、无孔型轧制及其经济意义 1.无孔型轧制无孔型轧制是指在无轧槽的轧辊上轧制高宽比较大的轧件,即按常规轧法是将有轧槽的轧辊改为平辊轧制,轧件不与孔型侧壁  相似文献   

5.
针对某500热连轧窄带钢生产线Φ650三辊粗轧机组采用双根轧制代替单道次轧制的优化方案,利用ANSYS/LS-DYNA有限元软件对Q235B钢优化前、后的整个粗轧过程进行了数值模拟分析。分析结果表明:优化前后轧件断面温度、等效应力-应变分布规律基本一致;特征点温度与实测值吻合良好,前5道次轧件侧面出现了明显的双鼓形;由于采用共轭孔型轧制,上下轧槽直径不对称,轧件上表面应力、应变比下表面略大;对优化前后的轧制力及轧件尺寸进行了分析对比,校核了优化前后粗轧机的主设备能力。优化结果表明优化后的轧线生产能力提高28.47%。  相似文献   

6.
舒军  方晴  汪巍  沈群 《硬质合金》2016,(4):263-267
为了提高硬质合金辊环轧制焊丝钢的使用寿命,本文针对硬质合金辊环轧制焊丝钢的失效形式,采用了4组不同孔型参数、不同精度形位公差的硬质合金辊环进行轧制实验研究。采用自制槽深测量仪检测轧槽的磨损深度。对比分析了硬质合金辊环单槽轧制量与孔型参数、形位公差的关系。研究表明:通过调整成品前机架K2架次硬质合金辊环孔型的参数,改变进入成品机架K1架次轧件的形状,可以大幅减少成品机架K1架次硬质合金辊环轧槽磨损不均匀程度,延长其轧槽使用寿命。进一步提高硬质合金辊环的孔型形位公差精度,可以提高单槽轧制量。  相似文献   

7.
楔横轧大断面收缩率一次楔成形轧件心部质量规律及原因   总被引:2,自引:0,他引:2  
为确定楔横轧大断面收缩率一次楔成形工艺心部质量的加工界限,对大断面收缩率下轧件心部质量规律进行了深入探索。采用实轧实验方法得到轧件心部最大孔洞面积数据;对比常规断面收缩率下轧件心部最大缺陷尺寸数据,得到大断面收缩率一次楔成形轧件的心部质量规律;并利用有限元数值模拟方法对大断面收缩率与常规断面收缩率轧件心部应力、应变进行对比分析,找出规律的原因。所得规律为,大断面收缩率轧制轧件心部质量整体好于常规断面收缩率轧制,另揭示出其原因为,大断面收缩率轧制轧件金属瞬时轴向流动量大,杆部中心剩余金属少,可供缺陷发展的空间也较小;不利于轧件心部质量的应力应变作用的时间较短,与工艺时间相同时刻常规断面收缩率的应力应变最大值相差比例也较小,静水压力在整个轧制过程中有利于轧件心部质量。  相似文献   

8.
借助于有限元分析软件MSC.SuperForm对钢管8机架全浮动芯棒连轧过程进行模拟,分析了连轧过程轧件的应力应变分布特点.分析表明,各机架沿孔型宽度方向的压下不均匀导致了轧件在孔型宽度方向(尤其在孔顶和辊缝处)变形的严重不均匀,轧件断面特定点(孔型开口和孔顶)在轴向上应力具有拉-压-拉属性,且规律性很强.此外,研究了芯棒摩擦对连轧过程力能参数、轧制壁厚精度的影响:随芯棒摩擦系数的增大,各机架出口轧件断面横向壁厚不均度增加,同时轧制力、芯棒轴向力明显地增大.因此在实际生产中要尽力改善芯棒的润滑效果,减小其不利影响.  相似文献   

9.
采用有限元仿真手段,对比分析了轧件在高速线材减定径机组中的变形特点、轧件宽展、轧制应变、轧制力及轧件温度的变化情况.研究结果表明,随轧制速度的提高,轧件出口温度升高.经4道次连续轧制后,轧件断面有效应变不均匀,轧件断面的最大有效应变值集中于轧件的中心位置,轧件的有效应变逐渐积累可达1.2,有效应变差值约为0.7.随轧制温度提高,轧件宽展略有降低,在850~1000℃轧制时,轧件的宽展值相差仅为0.128mm.  相似文献   

10.
为了获得综合性能良好的某7A04铝合金楔形长板辊轧件,结合其复杂的形状结构特点,提出采用整体辊轧成形的工艺方案。通过在轧辊上开设一定形状的孔型,用来成形出满足尺寸要求的轧件。并对所提出的工艺方案进行有限元模拟,在控制其他工艺参数不变的条件下,通过模拟不同温度、辊轧角速度、摩擦系数条件下辊轧力的大小变化情况,总结出不同工艺参数下辊轧力的变化规律。最终确定了合理的辊轧工艺参数为:温度470℃,辊轧角速度0.1 r·s~(-1),摩擦系数0.7,且工艺试验得到的辊轧件与有限元模拟得到的辊轧件形状尺寸基本一致。  相似文献   

11.
通过对传统孔型的讨论和模拟的结果分析,基于大塑性变形原理的晶粒超微细化方法,提出了均匀大应变棒材轧制的新型孔型设计思想,建立了以多向大塑性变形加工为特点的扁椭圆系列孔型.采用非线性有限元法,建立了孔型棒材温轧过程数值分析模型,对比分析了新型孔型系列与传统孔型系列轧件断面内塑性应变分布规律,得出了在满足形状尺寸精确的条件下新型扁椭孔型能更好地将大塑性应变引入到断面中心,并使断面塑性应变趋于均匀,其中心处最大累积应变超过5.0,达到产生超微细晶粒的大塑性变形制备条件.  相似文献   

12.
采用有限元软件DEFORM-3D对楔横轧厚壁空心轴进行热力耦合数值模拟,得到了工艺参数对楔横轧厚壁空心轴不圆度的影响规律。结果表明,在成形角35°~45°、展宽角4°~7°、断面收缩率35%~65%、轧制温度900℃~1100℃时,轧件不圆度与成形角及断面收缩率的变化成反比,与展宽角及轧制温度变化成正比。采用H630楔横轧机进行轧制实验验证了有限元模型的正确性。模拟与实验结果证明,轧件横截面失圆是楔横轧成形厚壁空心轴类件常见的质量问题;变形区金属沿轴向的流动受到未变形金属的阻碍,是造成不圆度在轧件的对称面上最大并沿轴向逐渐减小的原因。研究结果为确定楔横轧厚壁空心轴的工艺参数提供了理论依据。  相似文献   

13.
本文采用有限元法模拟硬质合金轧辊轧制螺纹钢的过程,研究了轧辊孔型参数对轧制过程的影响,并通过现场轧制实验验证数值模拟的结果。结果表明:轧制规格Φ12 mm螺纹钢过程中,成品前孔采用单椭孔型时,轧件X轴、Y轴、Z轴的最大轧制应力分别为672 MPa、730 MPa、661 MPa,而成品前孔采用平椭孔型时,其X轴、Y轴、Z轴的最大轧制应力分别为731 MPa、855 MPa、815 MPa;X轴、Y轴、Z轴的最大轧制应力分别提高为8.7%、17.1%、23.2%。而在两种轧制条件下,硬质合金轧辊螺纹轧槽内的温升基本相同,最高温度约300℃,而轧制平椭轧件时轧槽的高温区域较多,这是由于在两种轧制条件下塑性变形程度的不同造成。通过现场轧制实验,采用牌号为YGR55的硬质合金轧辊轧制规格Φ12 mm螺纹钢,成品前孔为平椭孔型时,硬质合金螺纹轧辊的单槽过钢量约700吨,而成品前孔为单椭孔型时,其单槽过钢量超过1 200吨。同时表明,有限元数字分析模型能为硬质合金轧辊设计、使用起到重要的参考作用。  相似文献   

14.
对热连轧Q345B窄带钢精轧立-平辊多道次轧制进行了三维热力耦合有限元模拟,分析了轧制过程中轧件温度场、等效应力-应变场及轧件表面特征点流动规律。结果表明,模拟计算的带钢断面中心点温度及平轧各道次稳态轧制压力与实测值吻合良好;宽度方向轧件边、角部与中心温差较大是导致边部金属应变不协调,上翻至带钢边部表面的主要原因;轧件角、边部由于冷缩效应存在一定拉应力,会影响轧件角部缺陷的愈合或扩展;采用立辊侧压调宽对轧件边部减薄和翻平宽展可能造成的边部缺陷有明显的改善作用。表面节点位置变化规律可为现场轧制生产中轧件边部缺陷的溯源分析提供便利。  相似文献   

15.
凸轮轴楔横轧成形仿真与应力应变分析   总被引:5,自引:3,他引:2  
提出了一种凸轮轴楔横轧成形新工艺,得出了楔横轧成形凸轮轴轧辊的辊形曲线和轧齐曲线.利用三维有限元软件DEFORM-3D对凸轮轴成形进行了数值模拟,在模拟轧制过程中,轧辊楔面排料的同时轧件上的凸轮轮廓也被轧辊上的凸轮凹槽逐渐轧制生成,并且逐渐被轧齐,得出轧件应力、应变场在凸轮顶端和芯部较小,在与轧辊楔面接触处最大,呈非对称分布的特点.模拟结果表明,用楔横轧工艺轧制凸轮轴是完全可行的.  相似文献   

16.
为了探索半固态钢铁材料流变轧制工艺,利用MARC有限元软件对弹簧钢60Si2Mn半固态轧制过程进行了三维有限元模拟,分析了在平辊和孔型轧制条件下的应力、应变场.结果显示,采用多孔材料的几何模型和刚-粘塑性有限元模型,能够正确描述半固态轧制的热-力耦合问题,反映了半固态金属具有低流变应力和良好流动性的特征.与平辊轧制相比,在孔型中轧制,轧件变形区横截面上应力、应变场分布更均匀.模拟结果与试验结果相吻合,说明半固态材料适合在孔型中轧制.  相似文献   

17.
谢权 《轧钢》1989,(1):44-48
鞍钢中型厂在轧制14~#、16~#槽钢时采用的弯腰大斜度孔型设计具有轧制电耗及辊耗低,轧件易于脱槽,可用小坯轧大材等优点。但在应用时,存在轧机设备条件差、轧机数目少、辊身长度能安排的孔型数目少和可供选择的坯料规格少等问题。为了适应这些条件,我厂采用并发展了一种类似重钢小轧  相似文献   

18.
<正> 周期轧管变形区中,轧件宽度是否与轧辊孔型宽度(主要与孔型半径及开口角有关,见图1)相适应直接影响到轧出钢管的质量。如果孔型宽度(开口角)比实际轧件宽度小,变形金属就会挤入辊缝内形成“耳子”,有“耳子”的毛管翻转90°进行下一次轧制时,钢管外表面就会形成周期性分布的轧制外折;如果孔型宽度比轧件宽度大,则金属的延伸变形不佳,钢管横向壁厚不均程度就会加剧。以我厂216周期轧管车间为例,1972—1973年期间轧制φ168及φ180钢管时,由于原设计轧辊孔型宽度变化与轧件宽度不相适应,  相似文献   

19.
孔型设计对角钢轧制稳定性的影响   总被引:1,自引:0,他引:1  
矫德智 《轧钢》1990,(3):17-20
轧制过程中轧件在孔型中或出孔型后的左右摆动、纵向扭转、侧弯和缠辊等均影响轧件断面和长度方向的几何形状。因此,研究轧制的稳定性有着重要意义。下面就孔型对轧制稳定性的影响进行讨论。1.孔型系统的选择目前,各厂生产角钢使用蝶式孔型系统,一般使用平轧蝶式孔型系统,少数厂仍使用立轧蝶式孔型系统。从轧制稳定性方面考虑,平轧系统具有其优越性。①异形孔全部使用闭口孔型,可较好地控制产品的尺寸及质量。  相似文献   

20.
60mm方坯三线切分轧制工艺的实验研究   总被引:2,自引:0,他引:2  
白祖泉  陈信令 《轧钢》1991,(1):35-37
切分轧制是利用切分楔刀的辊切作用,将轧件轧成并列的两根或两根以上单根轧件的一种新的轧制方法。本文针对Φ650轧机切分三线60mm方坯做模拟实验,以确定正确的工艺参数。模拟实验是在东北工学院轧钢实验室Φ130轧机上用自行设计的孔型轧制,模拟比为1:5的工业纯铅试件进行切分轧制的。所用实验轧机的主要技  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号