首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了改善体育器材用镁基合金型材的塑韧性和强度,基于织构和力学性能的分析结果,采用不同的挤压温度、挤压速度和挤压比对Mg-Al-Sn-In新型镁合金型材挤压工艺进行了优化。结果表明,在试验条件下,随挤压温度从300℃提高到400℃,型材的抗拉强度和屈服强度均先提高后下降,断后伸长率先提高后基本不变;随挤压速度从1m/min增大到3 m/min或挤压比从10增大到20,型材的抗拉强度、屈服强度和断后伸长率均先提高后下降。与300℃挤压相比,375℃挤压型材的抗拉强度、屈服强度和断后伸长率分别增加27%、62%、201%;(0002)基面的织构最大值减小27%。型材的挤压工艺优选为:挤压温度375℃,挤压速度2.5 m/min,挤压比13。  相似文献   

2.
为改善和提高AZ81镁合金的组织和力学性能,采用不同的始锻温度对AZ81镁合金进行了锻压试验,并进行了组织和力学性能的测试与分析。结果表明:随始锻温度从400℃升高至480℃,试样的平均晶粒尺寸和断后伸长率先减小后增大,而抗拉强度和屈服强度先增大后减小,试样的显微组织和力学性能均先改善后变差。与400℃时锻造相比,始锻温度为440℃时锻造的AZ81镁合金的平均晶粒尺寸减小了9.4μm,晶粒细化,组织得到了极大地改善;抗拉强度和屈服强度分别增大了63和71 MPa,断后伸长率减小了3.9%。因此,AZ81镁合金的始锻温度优选为440℃。  相似文献   

3.
为了优化汽车空调支架用镁合金的挤压工艺,本文采用不同的工艺参数对试样进行了挤压。结果表明:随挤压温度从300℃增加至400℃、挤压速度从1 m/min增加至5 m/min,试样的强度先增大后减小,断后伸长率先减小后增大,腐蚀电位先正移后负移,试样的耐腐蚀性能先提高后下降。与300℃相比,360℃挤压使试样抗拉强度和屈服强度分别增大了22%、26%,断后伸长率减小了23%,腐蚀电位正移66 m V;与1 m/min相比,4 m/min挤压使试样抗拉强度和屈服强度分别增大了17%、20%,断后伸长率减小了15%,腐蚀电位正移51 m V。Mg-5Al-1Zn-0.3Ti镁合金的挤压温度和挤压速度参数分别优选为360℃和4 m/min。  相似文献   

4.
为了研究挤压温度对汽车用Mg-Al-Zn-Ti新型镁合金组织和性能的影响,分别采用5种挤压温度进行了汽车用Mg-AlZn-Ti新型镁合金的挤压试验,并进行了显微组织和力学性能的测试和分析。结果表明:随着挤压温度从230℃增至350℃,合金的平均晶粒尺寸先减小后增大,其抗拉强度和屈服强度均呈现先升高后降低的变化趋势,而断后伸长率在较小变化范围内呈现先降低后升高的变化趋势。挤压温度为320℃时,合金的晶粒尺寸降至最小,其力学性能表现最佳,较230℃挤压时平均晶粒尺寸减小约9μm,抗拉强度和屈服强度分别增大31和32 MPa。因此,汽车用Mg-Al-Zn-Ti新型镁合金的挤压温度优选为320℃。  相似文献   

5.
对AZ80Ce镁合金试样进行了锻造,研究了锻造温度对试样显微组织和力学性能的影响。结果表明:随始锻温度增大,试样的平均晶粒尺寸和断后伸长率先减小后增大,强度先增大后减小。与370℃始锻温度相比,400℃始锻温度使试样的平均晶粒尺寸和断后伸长率分别减小了47%和16.2%,抗拉强度和屈服强度分别增大了8.9%和12.8%;与270℃终锻温度相比,290℃终锻温度使试样的平均晶粒尺寸和伸长率分别减小了40%和14.2%,抗拉强度和屈服强度分别增大了5.8%和9.9%。汽车车轮用AZ80Ce镁合金的始锻温度和终锻温度分别优选为400、290℃。  相似文献   

6.
采用不同浇注温度和压射比压进行了AZ80-0.5Ce镁合金机械外壳压铸,并进行了力学性能和显微组织的测试与分析。结果表明:当浇注温度从650℃提高到730℃、压射比压从40 MPa增大到70 MPa时,外壳力学性能先提高后下降。(与650℃浇注相比,690℃浇注时外壳的平均晶粒尺寸由14.9μm减小到10.0μm,减小了32.4%;抗拉强度和屈服强度分别由251、216 MPa增大到288、252 MPa,分别增大14.7%、16.7%。与压射比压40 MPa相比,压射比压为60 MPa时的外壳平均晶粒尺寸由13.8μm减小到10.0μm,减小27.5%;抗拉强度和屈服强度分别由253、218 MPa增大到288、252MPa,分别增大13.8%、15.6%)。AZ80-0.5Ce镁合金机械外壳压铸的浇注温度优选为690℃,压射比压优选为60 MPa。  相似文献   

7.
采用不同的挤压速度和挤压温度对建筑幕墙6063-InV新型铝合金型材试样进行了挤压试验,并进行了试样力学性能和耐腐蚀性能的测试、比较和分析。结果表明:随挤压速度从1 m/min增加到5 m/min,挤压温度从360℃增加到480℃,试样的强度和耐腐蚀性能先提升后下降。试样的挤压速度和挤压温度分别优选为3 m/min、420℃。当挤压速度为3 m/min时,试样的抗拉强度和屈服强度较1 m/min挤压时分别增大23、20 MPa;盐雾腐蚀72 h单位面积质量变化量减小40.7%;当挤压温度为420℃时,试样的抗拉强度和屈服强度较360℃挤压时分别增大27、26 MPa,盐雾腐蚀72 h单位面积质量变化量减小42.9%。  相似文献   

8.
对AZ80镁合金管材的挤压工艺进行研究,对挤压前后材料的组织与力学性能进行分析。结果表明,经过热挤压后,镁合金的晶粒细化,力学性能有较大提高。晶粒尺寸由挤压前铸态的28μm细化到挤压后的4μm,抗拉强度由162 MPa提高到265 MPa,屈服强度由74 MPa提高到180 MPa,伸长率由4%提高到14%。随着挤压比的增加,晶粒细化明显,伸长率和屈服强度增加。对于挤压AZ80镁合金管材,合理的挤压工艺参数:挤压比为18.2,坯料温度为390℃,模具预热温度为360℃,挤压速度为1 mm/s,凹模锥半角为60°-70°。  相似文献   

9.
采用不同工艺进行Al-1Mg-0.6Si-0.5Cr-0.5V新型铝合金建筑模板的挤压试验,分析了挤压模板试样的力学性能和耐腐蚀性能。结果表明:随挤压温度从350℃提高到475℃、挤压速度从2 m/min加快到4.5 m/min,试样的力学性能和耐腐蚀性能都先提高后下降。当挤压速度恒定为3.5 m/min时,与350℃挤压相比,450℃挤压时试样的抗拉强度和屈服强度分别提高12.1%、12.2%,腐蚀质量损失率减小31.5%。当挤压温度保持450℃不变,与4.5m/min挤压的速度相比,3.5 m/min的挤压速度挤压时,试样的抗拉强度和屈服强度分别提高9.9%、10.0%,腐蚀质量损失率减小33.3%。模板试样的挤压温度和挤压速度分别优选为450℃、3.5 m/min。  相似文献   

10.
对含Y的Mg-Al-Zn系镁合金宽幅型材进行了不同温度的挤压,并进行了显微组织、XRD、力学性能和耐腐蚀性能的测试与对比分析。结果表明,当挤压温度从300℃升高至450℃,该宽幅型材的晶粒尺寸减小,晶面织构强度先基本不变后明显下降,抗拉强度和冲击韧度下降,伸长率和耐腐蚀性能先提高后下降。与300℃的挤压型材相比,350℃挤压的型材能使平均晶粒尺寸增大6μm,晶面织构强度基本不变,抗拉强度减小3 MPa,冲击韧度下降3.43%,伸长率增加2.2%,腐蚀电位正移104 m V。  相似文献   

11.
采用不同的温度进行了电器散热片用Mg-Al-Zn-Cu-In镁合金的挤压,并进行了显微组织、散热性能和力学性能的测试与分析。结果表明:随挤压温度从300℃提高至420℃,电器散热片用Mg-Al-Zn-Cu-In镁合金的平均晶粒尺寸和断后伸长率先减小后增大,热导率(散热性能)和抗拉强度则先增大后减小。当挤压温度为380℃时,Mg-Al-Zn-Cu-In镁合金的平均晶粒尺寸为8.2μm,断后伸长率为8.1%,分别较300℃挤压时减小了27%和14%;热导率为151 W/(m·K),抗拉强度为282 MPa,分别较300℃挤压时增大了44%和25 MPa,此时散热性能和强度最好。电器散热片用Mg-Al-Zn-Cu-In镁合金的挤压温度优选为380℃。  相似文献   

12.
为了获得高性能镁合金板材,采用正向热挤压将铸态AZ31镁合金坯料挤压成2 mm厚的板材,研究了其显微组织演变及力学性能等。结果表明:铸态AZ31镁合金坯料挤压成板材后可以获得均匀细小的再结晶晶粒组织,其力学性能(屈服强度、抗拉强度、伸长率)大幅度提升。铸态AZ31镁合金坯料在400、450℃挤压成板材后,平均晶粒尺寸可由390μm分别细化至3.9、5.6μm。挤压后的AZ31镁合金板材展现出典型的(0001)基面织构,大部分晶粒的c轴垂直于板材表面。铸态AZ31镁合金的力学性能较差,而AZ31镁合金挤压板材在三个拉伸方向上均展现出优越的力学性能。随挤压温度的升高,AZ31镁合金挤压板材晶粒长大且显微组织不均匀,综合力学性能也有所下降。  相似文献   

13.
在不同的挤压温度和挤压速度下制备了Mg5Sn1Mn镁合金,并进行了显微组织和力学性能的测试与分析。结果表明,随挤压温度从340℃提高到430℃或挤压速度从6 mm/s增加到15 mm/s时,Mg5Sn1Mn镁合金的晶粒先细化后粗化,合金的抗拉强度、屈服强度和断后伸长率均先增大后减小。优选的挤压温度为400℃、挤压速度为12mm/s。在该挤压工艺下Mg5Sn1Mn镁合金晶粒呈等轴晶分布,组织均匀,第二相颗粒状弥散分布在基体中,室温抗拉强度、屈服强度和断后伸长率分别为:358、262 MPa、21.8%。  相似文献   

14.
对汽车用镁合金挤压过程进行了自适应PID控制前后的对比,并进行了显微组织和力学性能的测试与分析。结果表明:与自适应PID控制前相比,控制后的挤压态AZ80、AZ31镁合金试样平均晶粒尺寸减小,抗拉强度和屈服强度增大,断后伸长率略有减小,镁合金的显微组织和力学性能均得到了提高。  相似文献   

15.
采用不同的静置温度对Mg-6Al-2Sn铸态镁合金进行了试验,并进行了显微组织和力学性能的测试与分析。结果表明:随静置温度从650℃升高至770℃,试样的平均晶粒尺寸先减小后增大,抗拉强度和屈服强度先增大后减小,断后伸长率变化不大;与650℃静置温度处理时相比,710℃静置处理时的Mg-6Al-2Sn铸态镁合金的平均晶粒尺寸减小了55μm(167→112μm),抗拉强度和屈服强度分别增大了35 MPa(173→208MPa)和18 MPa(124→142MPa)。Mg-6Al-2Sn铸态镁合金的静置温度优选为710℃。  相似文献   

16.
本文研究了不同轧制变形量和轧制速度对AZ31镁合金板材微观组织和力学性能的影响。轧制变形可显著细化AZ31镁合金板材的晶粒尺寸并提高其综合力学性能。当轧制速度为5m/min,轧制变形量为50%时,板材平均晶粒尺寸最细可达到9μm,其抗拉强度、屈服强度和延伸率分别提高到280MPa、180MPa和30%以上,同时探讨了AZ31镁合金屈服强度与晶粒大小之间的关系。在大量AZ31镁合金轧制相关文献和本文一系列实验研究的基础上,对比分析了不同轧制工艺对AZ31镁合金综合力学性能的影响。研究表明,本文所采用轧制工艺可显著提高AZ31镁合金板材的综合力学性能,同时降低板材轧向和横向的各向异性。  相似文献   

17.
研究了不同轧制变形量和轧制速度对AZ31镁合金板材微观组织和力学性能的影响。轧制变形可显著细化AZ31镁合金板材的晶粒尺寸并提高其综合力学性能。当轧制速度为5 m/min,轧制变形量为50%时,板材平均晶粒尺寸最细可达到9μm,其抗拉强度、屈服强度和延伸率分别提高到280、180 MPa和30%以上,同时探讨了AZ31镁合金屈服强度与晶粒大小之间的关系。在大量AZ31镁合金轧制文献数据和本实验一系列数据的基础上,对比分析了不同轧制工艺对AZ31镁合金综合力学性能的影响。研究表明,本实验所采用轧制工艺可显著提高AZ31镁合金板材的综合力学性能,同时降低板材轧向(RD)和横向(TD)的各向异性。  相似文献   

18.
采用不同的工艺参数进行了AZ91-0.5In镁合金电机盖试样的压铸试验,并进行了室温力学性能测试与分析。结果表明,随压射比压增大或压射速度增快,试样的抗拉强度和屈服强度均先增大后减小,而断后伸长率在7%~9%范围内先减小后增大。当压射比压90 MPa、压射速度5 m/s时,试样的抗拉强度和屈服强度达到峰值,分别为262、171 MPa。AZ91-0.5In镁合金压铸电机盖的压射比压优选90 MPa、压射速度优选5 m/s。  相似文献   

19.
文章研究了电磁连铸AZ31镁合金经热挤压变形后的微观组织和力学性能。结果表明,挤压过程中的动态再结晶能够显著细化晶粒,局部细晶区的平均晶粒为2μm。与铸态合金相比,挤压后的AZ31镁合金具有更细小的晶粒和更均匀的微观组织。挤压变形后产生强烈的基面织构;挤压后材料的力学性能显著提高。屈服强度、抗拉强度和断面收缩率随着挤压比的增大而增大。挤压比为25时,屈服强度、抗拉强度和断面收缩率分别为259MPa,357MPa和30.5%,比铸态合金分别提高了86.33%,64.52%和67.40%。随着挤压比的增大,晶粒细化效果更为明显,微观组织更均匀。断口形貌分析表明,挤压变形后材料由韧脆混合型断裂,转变为韧性断裂。  相似文献   

20.
采用不同的挤压温度、挤压速度和挤压比,进行了汽车6063铝合金散热器的挤压成型试验,并进行了力学性能测试与分析。结果表明,挤压温度、挤压速度和挤压比对散热器的抗拉强度和屈服强度产生明显影响,对其断后伸长率影响不明显。随挤压温度从460℃提高至540℃、挤压速度从0.5 m/min增大至2.5 m/min、或挤压比从10增大至14,散热器的抗拉强度和屈服强度均先增大后减小,断后伸长率变化幅度较小。挤压温度、挤压速度和挤压比,分别优选为520℃、1.5 m/min和13。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号