首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《模具制造》2021,21(2):86-89
采用OM、SEM、硬度测试分析方法,研究了不同固溶温度、冷却方式和不同时效温度对Cr4Ni3Mn Cu Al钢组织和硬度的影响。结果表明:随着固溶温度的升高,固溶硬度呈现先升高后降低的趋势,固溶油冷硬度高于固溶空冷硬度约1.1HRC。固溶冷却后的组织以板条马氏体为主,880℃为最佳的固溶温度。在200℃~610℃范围内时效4h,时效硬度呈现出先升高后降低的趋势。时效4 h可为钢材提供约6.2HRC的硬度增量。520℃时效后得到的组织为板条马氏体+少量粒状贝氏体+少量残余奥氏体。从组织和硬度方面综合评价,880℃固溶油冷+520℃时效为Cr4Ni3MnCuAl钢的最佳热处理工艺。  相似文献   

2.
模拟两阶段控轧控冷工艺,进行了低碳贝氏体钢轧制实验,分析了轧后快速水冷和空冷对低碳贝氏体钢组织及性能的影响。结果显示,钢轧后,在两种冷速下得到的组织形貌差别较大,快速水冷得到强度较高的板条贝氏体组织,缓冷得到强度较低的粒状贝氏体组织,粒状贝氏体的形成温度较高,没有明显板条特征;板条贝氏体屈服强度比粒状贝氏体高出278MPa,抗拉强度高出307MPa;而粒状贝氏体的塑性和韧性指标明显优于板条贝氏体,延伸率和-20℃低温冲击功指标是板条贝氏体的近3倍。  相似文献   

3.
利用Gleeble-1500热/力模拟实验机,研究了新开发的屈服强度600 MPa级高强钢的相变规律,分析了不同冷却速率对钢组织的影响。结果表明:相变开始温度为488~610℃,终止温度为330~472℃;随冷速的提高,相变组织中多边形铁素体和准多边形铁素体的量逐渐减少,而粒状贝氏体的量逐渐增多,直到以粒状贝氏体为主的组织;当冷速达到10℃/s后,粒状贝氏体向板条贝氏体过渡,直到全部生成板条贝氏体,且在10~20℃/s,组织基本全为板条贝氏体。冷速高于20℃/s后则产生较多的马氏体。  相似文献   

4.
采用Gleeble-3500热模拟试验机模拟了550 MPa级桥梁钢板热变形奥氏体的动态连续冷却转变过程,结合金相法绘制实验钢的CCT曲线,并对相变组织进行硬度和拉伸性能测试。结果表明,当冷却速度小于1℃/s时,钢的冷却组织为粒状贝氏体,其基体为铁素体;当冷速为5℃/s时,转变组织中开始出现少量板条贝氏体,为粒状贝氏体+板条贝氏体的混合组织,且粒状贝氏体岛状组织明显沿板条界面分布;随冷速继续增大,粒状贝氏体减少,板条贝氏体特征更加明显。随冷速的增大,组织细化,连续冷却转变组织硬度增加,强度升高。  相似文献   

5.
采用微合金化和热轧后超快冷等技术生产得到800 MPa级高韧直缝钢管钢,借助OM、SEM、TEM和室温拉伸等,研究了试验钢不同区域的组织与性能。研究表明,试验钢的热轧组织主要是粒状贝氏体+少量板条贝氏体;焊接热影响区粒状贝氏体体积分数减少到32.7%,板条贝氏体体积分数增加到30.5%,组织中出现针状铁素体和少量马氏体。试验钢热轧区主要以Ti为主进行复合微合金化,综合运用固溶强化、细晶强化、位错强化和析出强化,具有高的强韧性,屈服强度为804 MPa、抗拉强度为852 MPa、伸长率为21.5%。  相似文献   

6.
Si-Mn-Mo系贝氏体钢组织和性能的研究   总被引:4,自引:1,他引:4  
研究了新型高碳Si-Mn-Mo系贝氏体钢的组织和性能。结果表明,该钢空冷条件下得到贝氏体、马氏体和残留奥氏体的复相组织。其中包括板条马氏体和孪晶马氏体,而贝氏体为变态下贝氏体组织。试验用钢空冷后经250~300℃回火可获得较高的强度、硬度及良好的塑韧性配合。超过300℃回火,强度、硬度明显降低且有回火脆性出现。  相似文献   

7.
设计了一种超低碳Fe-Mn-Nb-Cu-B系屈服强度为690 MPa级工程机械结构用钢,利用扫描电镜(SEM)和透射电镜(TEM)等仪器研究了不同终冷温度对钢组织和性能的影响.结果表明:终冷温度对实验钢组织和力学性能具有较大影响,终冷温度较高时以粒状贝氏体为主,终冷温度较低时以板条贝氏体为主,在其它工艺相同的情况下,随着终冷温度的降低,屈服强度、抗拉强度和屈强比都呈升高的趋势,延伸率呈下降的趋势.终轧后经弛豫处理、终冷温度为350℃的实验钢的综合力学性能最优,屈服强度和抗拉强度分别达到715 MPa与860 MPa,伸长率达到20.6%.分析认为:实验钢的微观组织对其力学性能的变化起着主要的作用,这主要与其贝氏体的类型,组织中M-A岛的数量、大小和形态,还有组织中位错的密度和状态有关.  相似文献   

8.
设计了一种以无碳化物贝氏体为主要组织的1500 MPa级Si-Mn-Cr-Ni-Mo系超高强度钢,对比研究了实验钢轧后经空冷、先水冷至550℃后空冷和先水冷至450℃后空冷3种冷却工艺的显微组织和力学性能。结果表明:实验钢轧后直接空冷获得无碳化物贝氏体+少量M/A组织,先水冷后空冷得到无碳化物贝氏体+少量马氏体组织。组织中对性能尤其是韧性性能有显著影响的残留奥氏体薄膜的形貌和分布随冷却工艺的变化而变化,空冷冷却残留奥氏体薄膜分布在贝氏体铁素体板条间,先水冷再空冷冷却残留奥氏体薄膜不仅存在于贝氏体铁素体板条间,在板条内部也可以观察到少量细小的膜状残留奥氏体,分割贝氏体铁素体板条,起到了细化晶粒的作用,有益于实验钢力学性能的提升。先水冷至550℃后空冷,实验钢的抗拉强度可达1600 MPa,-20℃冲击吸收功为28 J,具有最优的综合力学性能。  相似文献   

9.
凿岩机械用钢需具有高强度、高耐磨性及抗疲劳特性,通常通过热加工和热处理工艺改善其性能,但是工艺流程长、能耗较高。通过热轧试验研究了840~900℃之间不同终轧温度以及轧后空冷、空冷-炉冷两种冷却方式对22CrNi3Mo钢组织和性能的影响,探索了一种新型的直接热处理工艺。结果表明,轧后空冷至室温时,组织为板条贝氏体+马氏体,降低终轧温度可使组织细化,强度提高;轧后空冷-炉冷时,组织为板条贝氏体、粒状贝氏体及沿奥氏体晶界分布的残留奥氏体,且块状残留奥氏体体积分数随终轧温度的降低呈现先增加后减小的趋势,而尖角状M/A岛的出现使得应力集中,引起韧性的下降,降低空冷终止温度可显著减小块状残留奥氏体体积分数,使得材料强度、韧性明显提高,力学性能接近传统工艺。  相似文献   

10.
通过Gleeble-3500热模拟试验机,结合热膨胀法、金相法及硬度法,研究了低碳硅锰钢连续冷却过程中组织形貌特征及形成机理。结果表明:在连续冷却过程中,冷速在0.5~10℃/s,出现呈块状或条状的铁素体;在0.5~30℃/s冷速,粒状组织、粒状贝氏体逐渐演变为板条贝氏体铁素体;在30~40℃/s,显微组织主要是板条马氏体及少量贝氏体,板条贝氏体铁素体显深褐色,板条马氏体显浅棕色。随连续冷却速度升高,试验用钢的显微硬度也随之升高。  相似文献   

11.
研究了终冷温度(550,450和350℃)对Mn系超低碳高强度低合金钢组织及低温韧性的影响.力学性能的测试结果表明,在终冷温度为450℃时,实验钢获得良好的强韧性配合,屈服强度为775 MPa,韧脆转变温度为-55℃.组织观察及晶体学表征结果表明,随着终冷温度的降低,组织逐渐由粒状贝氏体向板条贝氏体和板条马氏体转变;终冷温度为450℃时,组织以板条贝氏体为主,多数的板条束包含三组不同的板条块,有效晶粒尺寸最小,大角晶界比例达到最大.解理裂纹扩展路径的观察结果表明,具有大角晶界的贝氏体板条块对解理裂纹扩展具有显著的阻碍作用,因此板条块尺寸细化、大角晶界比例增加是低温韧性改善的主要原因.  相似文献   

12.
《塑性工程学报》2016,(4):136-140
通过IQPB热处理工艺对实验钢进行不同淬火温度等温,采用场发扫描电镜(SEM)和X射线衍射仪(XRD)对组织进行观察,并分析实验钢的力学性能。结果表明,不同淬火温度下得到不同的组织和力学性能;淬火温度为380℃时,组织为板条贝氏体,随着淬火温度的升高,组织逐渐向粒状贝氏体转变,且粒状贝氏体存在两种形态,即铁素体基体上存在链状M/A岛和铁素体基体上分布着球状M/A组织;板条状贝氏体抗拉强度高达1 200MPa,但断后伸长率仅为18%,粒状贝氏体强度稍低,抗拉强度为940MPa~800MPa,但塑性较好,伸长率范围27%~30%,其强塑积≥24 000MPa·%,高于板条贝氏体。  相似文献   

13.
利用光学显微镜(OM)、拉伸试验和硬度测试研究了合金元素Co对马氏体时效硬化不锈钢固溶态和时效态显微组织和性能的影响。结果表明:在1040~1100℃固溶时,晶粒尺寸随温度升高而增大;含Co钢晶粒尺寸和马氏体板条束尺寸均小于不含Co试验钢。力学性能测试表明:固溶温度对固溶态试验钢的硬度几乎没有影响;随时效温度升高,钢的强度和硬度减小,伸长率增大;时效处理后含Co钢的强度和硬度均大于不含Co试验钢,伸长率变化则不明显。加入Co元素的试验钢具有良好的综合力学性能。  相似文献   

14.
研究了新型高碳Si-Mn-Mo系贝氏体钢的组织和性能,结果表明,该钢空冷条件下得到贝氏体,马氏体和残留奥氏体的复相组织。其中包括板条马氏体和孪晶马氏体,而贝氏体为变态下贝氏体组织,试验用钢空冷后经250 ̄300℃回火可获得较高的强度,硬度及良好的塑韧性配合,超过300℃回火,强度,硬度明显降低且有回火脆性出现。  相似文献   

15.
700MPa级低碳微合金高强钢的相变规律研究   总被引:1,自引:0,他引:1  
利用Gleeble-1500热/力模拟实验机,研究了新开发的屈服强度700 MPa级高强钢的相变规律,分析了不同冷却速率对钢组织及性能的影响。结果表明,贝氏体相变在较宽的冷速范围内发生,在0.5℃/s~40℃/s的冷却速度范围内均可以得到贝氏体组织。在研究的冷却速度范围内,贝氏体开始相变温度在525℃~620℃之间,转变结束温度在332℃~479℃之间。随着冷却速度的提高,贝氏体开始相变温度降低,冷却速度从0.5℃/s增大至40℃/s,贝氏体开始相变温度下降了95℃,转变结束温度降低了147℃,且随着冷却速度的增加,显微组织由以粒状贝氏体为主转变为以板条贝氏体与马氏体,且板条尺寸也越来越细小。10~20℃/s之间冷速为700 MPa级高强钢最佳冷却速度范围。冷速从0.5℃/s上升到40℃/s的过程中,样品的硬度由254 Hv上升到369 Hv,约上升了115 Hv。  相似文献   

16.
用显微组织观察和力学性能测定法研究了Mn-Si系22Mn2SiVBS低碳空冷贝氏体钢在不同奥氏体化温度下的组织与力学性能的关系.结果表明,22Mn2SiVBS钢经1200℃奥氏体化后空冷,可以保证其显微组织以粒状贝氏体为主αK、σb和σa分别达到72.8 J/cm2、978 MPa和870 MPa,布氏硬度可达285 HBW,其综合性能可满足汽车半轴套管的使用要求.  相似文献   

17.
利用X射线衍射分析(XRD)、光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)等研究了930℃加热空冷及930℃加热水冷-空冷交替冷却对Φ53 mm无碳化物贝氏体钢20SiMn3MoV组织和力学性能的影响。结果表明:930℃加热空冷处理后,实验钢的组织较粗大,为贝氏体铁素体(BF)和分布在贝氏体铁素体板条之间的残留奥氏体(AR)组织,晶粒度等级为6.5~7.5级,抗拉强度为1288 MPa,-40℃冲击吸收能量为22.8 J。经930℃加热水冷-空冷交替冷却处理后(先水冷到400~450℃后空冷),实验钢的组织细小,为贝氏体铁素体(BF)和分布在贝氏体铁素体板条之间的残留奥氏体(AR)组织,晶粒度等级为7.5~8.0级,抗拉强度为1393 MPa,-40℃冲击吸收能量为38.8 J,表明水冷-空冷交替冷却工艺细化了实验钢的晶粒,提高了实验钢的强度及韧性,与930℃加热空冷相比,实验钢的强度提高了8.2%,低温韧性提高了70%。  相似文献   

18.
通过热力学分析计算,结合硬度测试、光学和扫描电镜观察研究了固溶温度及时效温度对10Cr3Mo3NiCuAl钢组织和硬度的影响。结果表明:试验钢在950 ℃固溶时,组织均匀细小,主要为板条马氏体+少量残留奥氏体,碳化物基本溶于基体,此时硬度较高,随固溶温度升高,马氏体板条出现粗化现象;试验钢在520~540 ℃时效处理时,基体中析出大量金属间化合物Ni3Al,起到了沉淀强化作用,硬度较高,随时效温度升高,组织中出现回火索氏体,导致硬度快速下降。推荐最佳固溶温度为950 ℃,最佳时效温度为520~540 ℃。  相似文献   

19.
采用Formastor-FⅡ全自动相变仪测定了1300 MPa级低合金高强钢的奥氏体化相变温度,结合光学显微镜与维氏硬度计等设备研究了800 ~ 500 ℃冷却时间(t8/5)对1300 MPa级低合金高强钢粗晶热影响区组织和硬度变化的影响规律. 结果表明,当t8/5为3 ~ 60 s时,1300 MPa级低合金高强钢粗晶热影响区组织均由板条马氏体组成,硬度值为438 ~ 454 HV5;随着冷却时间延长,粗晶区出现贝氏体类组织,当t8/5为150 s时,粗晶区为板条马氏体/贝氏体混合组织,硬度平均值为413 HV5;当t8/5为300 ~ 600 s时,粗晶区为板条贝氏体和粒状贝氏体混合组织,硬度值为341 ~ 381 HV5;当t8/5>600 s时,粗晶区组织主要为粒状贝氏体,硬度值为269 ~ 322 HV5. 冷裂敏感性评价结果表明,该试验钢碳当量CE(IIW)和CEN均大于0.5%,具有一定的冷裂倾向,需焊前预热,焊后热处理或保温缓冷等措施,避免焊接冷裂纹的形成.  相似文献   

20.
衣海龙  韦弦  王宏  徐党委  赵连瑞 《轧钢》2019,36(6):11-16
采用Formastor-FII相变仪和MMS-300热模拟实验机,研究了低锰、中锰钢在不同开冷温度及不同变形量条件下的连续冷却相变,建立了实验钢的连续冷却转变曲线,分析了贝氏体及马氏体的相变规律。结果表明,随着冷却速率的增加,低锰钢依次经过粒状贝氏体、板条贝氏体及马氏体相区,中锰钢只经过马氏体相区,在较宽的冷却速率范围内,均可获得马氏体组织;随着开冷温度的降低或冷却速率的提高,低锰钢的贝氏体相变开始温度和中锰钢的马氏体相变开始温度均有所降低;随着冷却速率的增加及开冷温度的升高,实验钢的显微硬度值均有所升高;变形促进了低锰钢粒状贝氏体相变,其显微硬度值降低,变形细化了中锰钢马氏体组织,其显微硬度值升高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号