首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用Thermecmastor-Z热模拟试验机研究了试验钢在800~1150 ℃、应变速率0.01~10 s-1的热压缩变形行为,并观察变形后显微组织。基于试验数据分析,确定了试验钢在奥氏体区的热变形方程,建立试验钢在0.8真应变下的热加工图。结果表明:试验钢的流变应力和峰值应变随变形温度的升高而减小;试验钢在奥氏体区的热变形激活能为385.91 kJ/mol。根据试验钢功率耗散及流变失稳判据确定最佳热加工工艺参数为热变形温度范围1050~1150 ℃和应变速率0.01~0.1 s-1。在该范围内,试验钢发生完全动态再结晶,功率耗散系数为17%~32%。  相似文献   

2.
马雪飞  姜君  李红雷 《锻压技术》2019,44(1):166-171
采用Gleeble-1500D热模拟试验机对Cr8钢进行了高温压缩试验,研究了Cr8钢在变形温度为900~1200℃、应变速率为0. 005~5 s~(-1)条件下的热变形行为。基于试验得到Cr8钢的真应力-真应变曲线,采用动态材料模型和Ziegler失稳判据建立了Cr8钢的热加工图。结果表明:当应变速率小于1 s~(-1)时,该合金的热变形流变曲线呈现出典型的动态回复型特征;材料的失稳区主要发生在高应变速率的区域,并且随着应变的增加,功率耗散因子增加。根据已建立的热加工图,得到了Cr8钢的最佳加工工艺参数为变形温度1125~1190℃、应变速率0. 005~0. 01 s~(-1)。分析加工图中非失稳区的金相照片,该材料的显微组织发生了动态再结晶,获得的组织晶粒细小且分布均匀;分析加工图中失稳区的金相照片,该材料的显微组织中出现了很多剪切带,验证了该热加工图的正确性。  相似文献   

3.
通过Gleeble-3500 热模拟实验机在950~1150℃,应变速率为0.01~3s-1 条件下的近等温热模拟压缩实验,建立了NiPt 15合金的流变应力-应变曲线及其热加工图。分析了NiPt15合金不同变形阶段的功率耗散情况;阐明了NiPt15合金的损伤失稳机制;基于Prasad 动态材料模型获得了不同应变速率、温度条件下的能量耗散率和失稳系数;研究了应变量、温度和应变速率对于能量耗散率和失稳系数的影响。结果表明:(1)变形温度是影响曲线变化趋势及动态再结晶的主要因素,且变形温度越高,应变速率越低,动态再结晶越充分;(2)加工失稳机制主要包括局部塑性变形、剪切变形带以及开裂,随真应变的增大先发生局部塑性变形,而后由剪切变形带取代,并最终向开裂演变;(3)NiPt15合金较为优异的加工实验条件主要集中在非失稳区,即变形参数1000~1100℃,0.03~0.1s-1以及1100~1130℃,0.01~0.03s-1范围内,并通过显微组织分析对热加工图进行了验证。  相似文献   

4.
利用Gleeble-3500热模拟试验机测定了6022铝合金的应力应变行为,基于动态材料模型,构建了热加工图。观察了不同变形条件下的金相组织。实验结果表明:当形变量为60%时,6022铝合金热加工图中存在局部较高的功率耗散区(加工温度为440~550℃、应变速率为0.01~1 s~(-1)时),达30%以上,为实验材料的最佳热加工区,在该区域热变形后,材料晶粒细小;热加工图中存在3个失稳区,加工温度为300~390℃,应变速率为0.01~0.02 s~(-1);加工温度为300~340℃,应变速率为0.4~10 s~(-1);加工温度为470~500℃,应变速率为0.6~10 s~(-1)。实际热加工过程中应避开此区域,防止材料内部微观缺陷的产生。  相似文献   

5.
为了研究DB685钢的热变形特性,选取并建立了DB685钢的高温应力应变本构方程,利用Gleeble-1500热模拟机对DB685钢在变形温度为900~1200℃、应变速率为0.01~10 s~(-1)、最大应变量70%条件下进行压缩实验,根据建立的本构方程,绘制DB685钢的热变形加工图,利用所建立的加工图,分析了不同温度和应变速率下合金的热成形性能,结果表明:随着变形温度的升高和应变速率的降低,合金的流变应力下降,动态再结晶更容易发生;DB685钢在1125℃温度以上,并且在对应的应变速率下,耗散系数存在峰值;随着应变的增大,其耗散系数略有增大,失稳区减小,但热加工图的整体趋势保持一定。因此对于工业热加工,建议变形温度为1125~1175℃,应变速率高于0.032 s~(-1)。  相似文献   

6.
利用热力模拟实验研究铸态耐热合金钢T/P91材料在热加工温度范围900~1200℃、应变速率范围0.01~5 s-1、变形量60%、70%下的真应力-应变曲线,并建立铸态T/P91合金钢的热变形本构方程;利用DMM动态材料模型计算出铸态T/P91合金钢在热变形中的耗散因子和流变失稳判据,绘制出热加工图。结果表明,热加工图预测的安全区晶粒组织均匀、组织易出现失稳开裂和组织粗大的缺陷,T/P91合金钢的热加工要避免高温低应变;利用DEFROM-3D软件通过数值模拟研究挤压工艺参数对挤压过程动态再结晶的影响,制定工艺参数为:挤压温度1500~1200℃,挤压比9,挤压速度26~36 mm/s。  相似文献   

7.
通过Gleeble热模拟实验机在1000~1200℃,应变速率为0.01~10 s~(-1)条件下的近等温热模拟压缩实验,建立了316LN双曲正弦的流动应力预测模型及其热加工图。该流动应力预测模型考虑了实验过程中塑性变形和摩擦引起的温升,对流动应力进行了修正,考虑应变对流动应力预测模型参数的影响,获得了统一流动应力预测模型,模型预测值与实验值的相关系数为0.992,平均相对误差为4.43%;热加工图基于Prasad动态材料模型分别获得了不同应变速率、温度条件下的能量耗散率和失稳系数;分析了应变量、温度和应变速率对于能量耗散率和失稳系数的影响。结果表明:实验条件下最大能量耗散率值为0.38,且高应变速率下失稳,并通过显微组织分析对热加工图进行了验证。  相似文献   

8.
利用热模拟试验机对7050铝合金进行等温压缩试验,获得了不同变形温度、不同应变速率和不同真应变下的流动应力数据。以试验数据为基础,建立了7050铝合金的BP神经网络本构关系模型。分析表明,该神经网络本构关系模型具有较高的精度,并得到了相关性和平均相对误差的验证。利用BP神经网络修正的数据,根据动态材料模型(DMM)建立功率耗散图和失稳图,通过叠加得到7050合金的热加工图,并利用热加工图确定了该合金的加工安全区和流变失稳区。分析得出了最佳变形工艺参数:变形温度为420~450℃,应变速率为0.01~0.10s-1,该区域的峰值功率耗散系数η为0.40。  相似文献   

9.
研究了34CrNiMo6钢的高温流变特性,并获得了其最佳热加工工艺窗口。首先,使用Gleeble-3500热模拟实验机对34CrNiMo6钢在变形温度为1173~1473 K、应变速率为0.001~1 s-1条件下进行等温热压缩实验,得到了不同应变速率和变形温度下的真实应力-真实应变曲线,并用Arrhenius模型对材料本构关系进行多元非线性回归,结果表明其回归精度较高。其次,使用流变数据构建了34CrNiMo6钢的热加工图并进行分析,考虑到所有应变情况,34CrNiMo6钢热加工工艺窗口应避开变形温度低于1300 K、应变速率高于0.05 s-1和变形温度高于1400 K、应变速率高于0.14 s-1的区域。最后,金相分析表明:34CrNiMo6钢在应变速率敏感系数、能量耗散率及失稳判据较小的区域具有晶粒不均匀、晶界不规则的特点,这是由于此时动态再结晶不完全;而在应变速率敏感系数、能量耗散率及失稳判据较大的区域发生完全动态回复和动态再结晶,组织比较均匀。  相似文献   

10.
采用Gleeble-3500对中碳钒微合金钢进行了高温压缩试验,研究了钢在900~1100℃、应变速率0.01~10 s-1的应力-应变数据。根据动态材料模型(DMM),基于Murty失稳判据建立了该钢的热加工图,分析了钢的流变失稳行为和微观组织。结果表明:合适的热加工区域是0.1~0.18 s-1应变速率、980~1000℃变形温度。失稳区是900~1010℃、0.18~10 s-1和1030~1100℃、0.02~0.20 s-1。材料热加工图与材料动态再结晶的形核和长大有关。  相似文献   

11.
《塑性工程学报》2015,(4):128-132
采用Gleeble-1500D热模拟试验机对SA508-3CL钢在变形温度800℃~1 200℃、应变速率0.001s-1~1s-1条件下进行热压缩实验,并将获得的真应力真应变数据引入Arrhenius型本构方程,通过多元线性回归计算,得到了SA508-3CL钢的变形激活能为422.455kJ·mol-1,同时建立了该钢的流变应力本构方程。将功率耗散图与失稳图叠加,得到了SA508-3CL钢在应变量为0.3、0.5和0.7时的热加工图,对在应变量为0.7时的热加工图及金相组织分析表明,该钢的组织缺陷主要是局部流变失稳,该钢的安全加工条件为温度1100℃~1200℃,应变速率0.01s-1~0.1s-1。  相似文献   

12.
刘建英 《铸造技术》2014,(10):2313-2315
利用Themomaster-Z热模拟实验机、动态材料模型理论和塑性功构建热加工图,预测LDX2101不锈钢在热变形过程中的裂纹产生条件。结果表明,试验钢在低变形温度或高应变速率时均会出现表面裂纹,且裂纹均由环形拉应力导致;表面裂纹与功率耗散图无必然的对应关系;Prasad稳定性判据对于本次试验表面裂纹预测失效,而Gegel判据预测的失稳区超过了表面裂纹区域,同样不适用于表面裂纹的预测;以塑性功方法建立热加工图对裂纹的预测与试验结果相符,临界值为70 N·m/m2。  相似文献   

13.
在Gleeble-1500D热模拟实验机上对GH79合金进行热压缩模拟实验。在对于GH79合金热变形行为及微观组织演变研究的基础上,分析比较Prasad,Gegel,Malas,Murty和Semiatin 5种不同失稳判据,并绘制不同失稳判据的热加工图。从不同失稳判据的热加工图中可以看出,在温度900~930°C、应变速率5×10-4~1.8×10-1s-1和温度960~1080°C、应变速率为5×10-4~1.5×10-1s-1的两个范围内该合金的功率耗散率值大于60%,上述两个区域为GH79合金的适合成形区域。  相似文献   

14.
采用Gleeble-1500D热/力模拟实验机,在变形温度为800~1050℃,应变速率为0.01~5 s~(-1)的条件下,对TA10钛合金做热压缩实验,并根据动态材料模型(DMM)建立不同应变下TA10钛合金的热加工图,分析应变对耗散效率因子、失稳参数和热加工图的影响。结果表明:随着应变的增加,峰值耗散效率因子和流变失稳区均呈现出规律性的变化,都出现了先减小后增大的现象,流变失稳区由小应变时的一个失稳区逐渐变为大应变时的两个失稳区;适用于TA10钛合金的热加工工艺参数范围是变形温度为950~1050℃、应变速率为0.01~0.8 s~(-1)。  相似文献   

15.
Mg-Gd-Y-Zn-Zr合金是新开发的超高强韧镁合金。在变形温度350~500℃、应变速率0.001~1 s-1的条件下进行了高强度镁合金Mg-10Gd-4Y-1.5Zn-0.5Zr(GWZ1042)的等温热压缩实验,获得了不同变形条件下的应力应变曲线。基于动态材料模型和Murty失稳判据,利用MATLAB软件建立了可描述材料加工性的三维加工图。结果表明,应变速率越小,温度越高,材料的功率耗散系数越大,可加工性越好;温度越低、应变速率和应变量越大,材料越容易发生流动失稳。基于加工图的热加工窗口和失稳区并结合微观组织和缺陷分析确定,GWZ1042合金最佳成形区间为:变形温度430~500℃,应变速率0.001~0.05 s-1。  相似文献   

16.
研究了ZK31-1.5Y镁合金在变形温度为250~450℃、应变速率为0.001~1 s-1条件下的热压缩变形特性,基于动态材料模型建立了热加工图,并结合真应力-真应变曲线确定了该合金在实验条件下的热变形机制及最佳工艺参数。结果表明:ZK31-1.5Y合金的真应力-真应变曲线主要以动态再结晶和动态回复软化机制为特征,峰值应力和稳态应力随变形温度的降低或应变速率的升高显著增加。合金功率耗散图和失稳图中分别包含了3个效率峰值区和1个马鞍形流变失稳区,峰区效率范围为38%~65%,叠加后形成的加工图给出了实验参数范围内热变形时的最优工艺参数,其热变形温度为350~450℃、应变速率为0.1~1 s-1。当应变量由0.1~0.6逐渐增大时对加工图分布规律影响不大。  相似文献   

17.
通过热模拟压缩实验研究了GH2907合金在变形温度为950~1100℃、应变速率为0.01~10s-1、变形量为60%条件下的热变形行为,流变应力随着变形温度的升高或应变速率的降低而显著降低;根据Arrhenius方程和Zener-Hollomon参数,计算了热变形激活能Q,建立了GH2907合金的热变形本构方程;根据动态材料模型,确定了GH2907合金在不同应变下的功率耗散图,功率耗散效率η较高的区域位于温度为1050~1100℃,应变速率为0.01~0.03s-1范围,在该变形区域内组织发生了明显的动态再结晶现象;基于Preased失稳判据,绘制了GH2907合金在不同应变下的热加工图,流变失稳区位于高温高应变速率区域,即温度为970~1100℃,应变速率为0.6~10s-1范围,在该变形区域内动态再结晶晶粒沿着绝热剪切带和局部流动分布。根据GH2907合金热加工图及微观组织分析得到适宜的加工区域是温度为1050~1100℃,应变速率为0.01~0.03s-1范围。  相似文献   

18.
以2219铝合金为研究对象,通过计算建立了该铝合金不同应变时的热加工图,得出适用于热加工工艺的参数。基于热加工理论基础,在Gleebe-1500热模拟机上对2219铝合金进行热加工压缩试验,根据动态材料学模型建立2219铝合金的热加工图。在所得热加工图基础上研究了2219铝合金在温度380~480℃、应变速率0.01~50 s-1条件下的热加工变形特性。结果表明,不同应变量条件下热加工图存在差异;在应变为0.4的条件下,热加工图存在三个失稳区,最佳变形区域的功率耗散系数η为0.31。  相似文献   

19.
为了获得00Cr12Ni11Mo1Ti2高强度不锈钢热加工图,优化其热加工工艺参数,采用Gleeble-3800型热模拟试验机,在变形温度为850~1150℃,应变速率为0.01~10 s-1的条件下对试验钢进行了热压缩试验,研究了其热变形行为。构建了试验钢在峰值流变应力下的本构方程,并且基于动态材料模型构建了能量耗散图,并分别采用Prasad和Murthy两种失稳判据构建了试验钢的塑性失稳图。结果表明:00Cr12Ni11Mo1Ti2钢在能量耗散率低于0.3的变形区间内同样可以发生动态再结晶,在应变速率为1.0~10 s-1,变形温度为850~1000℃的区间内,试验钢仅发生了部分动态再结晶且伴有大量的局部变形带产生,与Murthy准则预测的塑性失稳区更加吻合;在变形温度为1050~1150℃,应变速率为0.01~10.0 s-1的区间内试验钢具有最佳的热加工性能,可获得细小均匀的原奥氏体晶粒组织。  相似文献   

20.
三维热加工图描述了功率耗散区和流动失稳区随着应变速率、温度和应变的变化。采用Gleeble-1500D热/力模拟试验机在变形温度950~1200℃,应变速率0.05~5 s~(-1)的条件下对X12合金的热变形行为进行了研究。考虑应变对X12合金可成形性的影响,基于动态材料模型,建立了X12合金的三维热加工图,确定了X12合金热变形的最佳参数为应变大于0.3,温度为1150~1200℃,应变速率为0.05~0.63 s~(-1)。通过对有限元软件DEFORM的二次开发,将X12合金的三维加工图数据与DEFORM进行集成,对?8 mm×12 mmX12合金圆柱试样在不同温度及应变速率下的压缩过程进行了有限元模拟,得到了该试样压缩过程中的功率耗散系数及流动失稳系数分布图,验证了X12合金的最佳热变形工艺参数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号