首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 630 毫秒
1.
以Ni箔为中间层材料,对汽车用AZ31合金和304不锈钢进行了扩散焊接处理,研究了不同焊接温度和焊接保温时间下的焊接接头的显微组织和物相组成变化,并对不同保温时间下的焊接接头扩散层显微硬度和剪切强度进行了分析。结果表明,AZ31/Ni/304焊接头界面可分为靠近304不锈钢扩散层、共晶层、白色块状化合物层和AZ31合金基体渗透层;随着焊接温度的逐渐升高,扩散层的整体厚度呈现逐渐减小的趋势;随着焊接保温时间的延长,焊接扩散层厚度先增加而后降低;在整个焊接接头界面中,白色块状Mg-Ni-Al三元金属间化合物层的显微硬度最高,且当保温时间为20 min时取得最大值269 HV;AZ31/Ni/304焊接头的剪切强度随着保温时间的延长呈先增加而后降低的趋势,在保温时间为20 min时取得剪切强度最大值。  相似文献   

2.
采用Ni箔作为中间层,对AZ31B/Cu异种金属进行接触反应钎焊试验。对不同工艺参数下所得接头扩散区的组织及性能进行研究,从而找出最佳工艺参数范围。结果表明:当500℃×30 min时,焊接接头组织致密,界面接触良好,接头扩散区由Cu侧灰白色化合物层、层片状共晶组织层和深灰色Mg基体扩散层组成;当焊接温度500℃保温10~30 min时,焊合效果良好,无冶金缺陷;随着保温时间的延长,接头界面区主元素互扩散能力和扩散区宽度均升高;不同保温时间下钎焊接头的显微硬度分布规律基本一致,从Cu侧到Mg基体均呈先增后减的变化趋势,且接头扩散区的显微硬度明显高于两侧母材。  相似文献   

3.
Mg/Al异种材料扩散焊界面组织结构及力学性能   总被引:3,自引:1,他引:2       下载免费PDF全文
刘鹏  李亚江  王娟 《焊接学报》2007,28(6):45-48
Mg/Al扩散焊接头界面区由铝板侧过渡层(Mg2Al3相)、中间扩散层(MgAl相)、镁板侧过渡层(Mg3Al2相)组成.SEM观察分析表明,在界面铝板侧扩散层与中间扩散层之间存在一定的扩散空洞,不利于获得接头性能优良的扩散焊接头.随着加热温度的升高界面抗剪强度呈现先增大再降低的趋势,当加热温度475 ℃,保温时间60 min及压力0.081 MPa时,接头可达到最大抗剪强度18.94 MPa.接头界面扩散区的显微硬度范围为260~350 HM,明显存在三个不同硬度分布区,随着加热温度的提高,扩散区的显微硬度及扩散区宽度也相应增加.  相似文献   

4.
为了实现镁铜之间的可靠连接,以铝为中间夹层,在加热温度为500℃、保温时间20 min条件下,分别采用不同的加压方式对AZ31B和Cu进行扩散焊接。利用SEM、EDS、XRD、显微硬度计、万能拉伸实验机分析焊接接头的显微组织和性能。结果表明:扩散钎焊接头包括钎缝区和镁基体渗透区两部分。间歇性梯度加压时,钎缝区厚度最大,达到0.56 mm,显微组织依次为铜侧条状A_(l2)CuMg化合物、均匀连续的层片状(α-Mg+Al_(12)Mg_(17))_(共晶)和(Mg_2Cu+α-Mg)_(共晶)、镁侧Mg_2Cu化合物,接头平均剪切强度达到71.67 MPa;梯度加压时的钎缝区厚度减小,显微组织中的条状化合物增多,共晶组织为菊花状(α-Mg+Al12Mg17);恒压时的钎缝区厚度最小,约为0.3 mm,组织以粗大的Al-Cu二元化合物和Al-Cu-Mg三元化合物为主,接头硬度最大,平均剪切强度降低至60.33 MPa。加压方式对钎缝区的厚度、共晶组织分布形态和接头的力学性能均有较大影响,间歇性梯度加压下接头的硬度最低,剪切强度最高。  相似文献   

5.
以20μm厚的纯Cu片作为中间层,采用20μm厚的非晶态Ni基钎料箔在在900、930、950℃下保温10min真空钎焊W和CuCrZr合金。采用SEM和EDS分析了钎焊接头的界面形貌,检测钎焊接头的剪切强度及显微硬度。结果表明,中间层Cu与母材CuCrZr合金一侧界面结合良好,在CuCrZr合金一侧形成了钎焊热影响区;钎料与W母材界面处形成了反应层,在W母材侧有微裂纹。随着钎焊温度的升高,W侧裂纹增多,造成接头性能的迅速恶化。W和CuCrZr的钎焊温度最好控制在930℃以下。以纯Cu片为中间层,采用Ni基钎料钎焊W和CuCrZr的过程,实质上是Ni与Cu、W互相扩散并反应生成化合物层和固溶体的过程。钎焊接头的最佳剪切强度为144MPa,断裂主要发生在W母材及W与反应层之间的界面。钎缝区域的显微硬度随钎焊温度的升高而降低,CuCrZr合金焊接热影响区的硬度高于其母材。  相似文献   

6.
张维翔  杜双明  刘刚  张庆安 《热加工工艺》2013,42(3):168-170,173
选取厚度50μm的纯Cu箔作为夹层,在加热温度480℃、保温时间30min、压力10MPa、真空度1×10-2pa条件下对AZ31B镁合金进行真空扩散焊连接,利用SEM、EDS、XRD、显微硬度计等测试方法对接头界面区域的显微组织和性能进行分析.试验结果表明,利用镁与铜原子互扩散在接头处形成扩散界面区,能够实现镁合金的可靠连接.焊接接头由靠近母材一侧的扩散过渡区和中间扩散区组成,其中扩散过渡区主要是Mg(Cu,Al)固溶体基体及弥散析出的Mg17(Al,Cu)12相,中间扩散区主要由Mg2Cu、MgCu2中间相和Mg(Cu)固溶体混合而成.在焊接接头界面区域内,显微硬度值呈现台阶式递增的分布规律,其中扩散过渡区的硬度高出镁基体15~20HV,而中间扩散区的硬度高出镁基体50~60HV.  相似文献   

7.
用真空扩散焊接方法焊接铝合金和不锈钢。采用物相分析仪、描电镜、显微硬度计和万能试验机等对焊接接头结构和性能进行了分析。结果表明,通过扩散焊接能实现铝合金和不锈钢的焊接,获得的焊接接头界面结合良好。随着焊接温度升高,扩散层厚度增加,焊接温度550℃时扩散层出现裂纹。铝合金和钢界面处生成了高硬度相,主要为Fe2Al5和Fe4Al13金属间化合物。铝/钢焊接接头剪切强度随焊接温度增加呈先增加后减小的趋势,焊接温度500℃,保温时间3 h,得到接头剪切强度最大值为54 MPa,断裂方式为解理断裂。  相似文献   

8.
张月异  阳文辉 《热加工工艺》2014,(15):180-181,185
通过添加Cu箔中间层,采用两次焊接法连接不锈钢和镁合金,并对其焊接接头的剪切强度、显微硬度、显微组织进行了测试分析。结果表明,不锈钢-铜-镁扩散连接接头界面连接良好;焊接接头剪切强度随保温时间的增加先增加后减小,最大值达到45.2 MPa;金属间化合物显微硬度高于两侧Mg合金和Cu箔;随着保温时间的增加,金属间化合物层厚度增加。  相似文献   

9.
采用真空扩散焊对AZ91镁合金,7075铝合金进行了扩散连接,对焊接接头进行金相显微组织分析.并利用显微硬度计和微机控制电子万能试验机对接头界面扩散区的显微硬度和接头抗剪强度进行分析.研究结果表明.焊接温度和保温时间对接头抗剪强度有显著影响,在连接温度为470℃,保温时间为60min时,过渡层宽度为34.36μm,接头...  相似文献   

10.
采用Al72-Cu20-Mg5-Ni3合金为钎料,对15%SiCp/A356复合材料进行氩气保护气氛钎焊。钎焊温度为570、580、590℃,保温时间为30 min。分析不同温度下焊接接头金相显微组织,检测各个接头的显微硬度和剪切强度。结果表明:当焊接温度为570℃时,焊接接头的质量最好,母材与钎料的相互结合较为良好,结合强度得到提高;焊接接头的剪切强度值也达到最大,为38.47 MPa。  相似文献   

11.
采用接触反应钎焊技术在不锈钢表面分别镀镍和铜,添加Mg粉作为中间反应层进行接触反应钎焊,对3003铝合金和不锈钢之间的连接进行工艺探索试验。使用万能力学试验机测试焊接接头的力学性能,采用扫描电子显微镜观察接头的显微组织和元素分布,分析连接界面形貌、物相组成以及焊缝的连接机理。在钎焊温度560℃、焊接压力0.1 MPa、保温时间15 min的条件下进行接触反应钎焊实现两者的有效连接,接头最大剪切强度23.1 MPa,平均剪切强度21.6 MPa,钎料区Al原子扩散明显,并形成Al-Mg、Al-Cu、Al-Fe系等多种金属间化合物。  相似文献   

12.
采用(Ti-Zr-Cu-Ni)+W复合钎料作为连接层,在连接温度930℃,保温时间5min的工艺参数下真空钎焊Cf/SiC复合材料与钛合金.利用SEM,EDS和XRD分析接头微观组织结构,利用剪切试验测试接头力学性能.结果表明,钎焊时复合钎料中的钛、锆与C/SiC复合材料反应,在Cf/SiC复合材料与连接层界面生成Ti3SiC2,Ti5Si3和少量TiC(ZrC)化合物的混合反应层,连接层的铜、镍与钛合金中的钛发生相互扩散,在连接层与钛合金界面形成Ti-Cu化合物过渡层.对钎焊接头进行900℃,保温60 min扩散处理后,连接层组织达到均一化,母材TC4合金侧过渡层增厚.扩散处理后接头强度为99 MPa,较钎焊接头强度65 MPa提高了52%.  相似文献   

13.
采用Zn98Al和Zn72.5Al两种Zn-Al药芯钎料对SiCP/Al复合材料进行氩气保护钎焊试验,研究了钎焊温度和保温时间对接头剪切强度及显微组织的影响。结果表明,用这两种钎料在氩气保护炉中钎焊SiCP/Al复合材料,可以获得质量良好的钎焊接头。对Zn98Al钎料,当温度为490℃、保温45min时可获得剪切强度为71.01MPa的钎焊接头;而Zn72.5Al钎料,在温度为560℃、保温11 min时可获得剪切强度为63.71MPa的钎焊接头。两种钎料的钎焊接头显微硬度均略低于母材。两种接头钎缝区的XRD相结构分析发现,钎缝中都只存在α(Al)和β(Zn)两相;接头断口扫描观察显示,接头整体呈韧性断裂特征。  相似文献   

14.
利用等离子活化技术对93W/Ni/Mo1进行真空扩散焊接,用剪切强度和显微硬度表征焊接接头的力学性能,对焊接界面和接头断口物相及微观结构进行表征分析。结果表明,焊接温度低于800℃时,焊接界面有孔洞,焊接温度高于800℃时,焊接界面良好。焊接接头的剪切强度随着焊接温度的升高先升高后降低,在焊接温度为800℃时接头强度最大为100.2 MPa。焊接温度低于800℃时,焊接界面发生扩散形成固溶体;焊接温度高于800℃时,Ni/Mo1界面生成MoNi高硬度金属间化合物,降低焊接接头结合强度。93W/Ni/Mo1焊接接头的断裂破坏主要发生在Ni/Mo1扩散界面。  相似文献   

15.
《硬质合金》2015,(5):294-299
以铜基合金为钎料,通过真空钎焊方法获得Ti(C,N)基金属陶瓷与45钢牢固接头。采用扫描电子显微镜(SEM)、能谱仪(EDS)和X射线衍射仪(XRD)等研究了主要钎焊工艺参数对钎焊接头剪切强度、显微组织和界面处各元素分布的影响规律。结果表明:随着钎焊温度和保温时间的增加,接头的剪切强度先增加后减小。当钎焊温度和保温时间分别为1 060℃和10 min时,钎料与母材中的元素在界面处发生较剧烈扩散,并形成适当厚度的扩散层,界面产物从45钢一侧到Ti(C,N)基金属陶瓷一侧依次为(Fe,Ni)固溶体、Cu Mn Zn金属间化合物、(Cu,Ni)固溶体和Ti(C,N),此时,接头达到最高剪切强度195.3 MPa。  相似文献   

16.
采用厚度为50 μm的冷喷涂铜涂层作为中间层,研究了连接温度和保温时间对AZ31B镁合金/钢异种金属接触反应钎焊接头剪切强度的影响规律.通过金相显微镜、扫描电镜(SEM)、X射线衍射仪(XRD)、显微硬度和剪切强度试验,研究了AZ31B镁合金/钢钎焊接头界面微观组织和力学性能.结果表明,当连接温度为530℃,保温时间为60 min时,接头剪切强度达到最大值36.9 MPa.AZ31B镁合金/钢钎焊接头界面反应产物主要为Mg2Cu,α-Mg固溶体和Mg-Cu-Al三元相.Mg-Cu-Al三元相的尺寸和分布,以及08F钢侧是否存在Mg2Cu共晶相共同决定了接头的强度.由钎焊接头断口可知,最佳工艺参数下断裂方式为脆性断裂与韧性断裂的混合方式.  相似文献   

17.
张桂华 《热加工工艺》2015,(3):199-200,204
采用Cu中间层对铝合金和不锈钢进行真空扩散焊接。采用万能试验机和显微硬度计测试焊接接头力学性能,采用SEM、EDS对焊接接头的显微结构和元素分布进行了分析。结果表明,铝合金/Cu/不锈钢焊接接头剪切强度随保温时间的增加先增加后减小,保温时间为60 min时剪切强度达到最大值60.2 MPa。其焊缝由靠近铝侧反应层和靠近钢侧反应层组成,焊缝处显微硬度高于两侧基体。  相似文献   

18.
采用新型的Cu-Mn-Ni-Si钎料真空钎焊2Cr13不锈钢,研究了钎焊温度和保温时间对接头组织和室温力学性能的影响.结果表明:钎焊接头组织由钎缝中心区Cu-Mn基固溶体和钎缝界面反应区的(Fe,Ni,Mn)- Si化合物组成.随着钎焊温度的增加,钎缝界面处化合物层厚度减小,Cu-Mn基固溶体相应增多,接头室温剪切强度随之增加,在钎焊时间15min、钎焊温度1050℃时达到321 MPa.在钎焊温度1000℃时,接头室温剪切强度随着钎焊保温时间的延长先增加后降低,在钎焊保温时间30min时取得最大值305 MPa.  相似文献   

19.
Mo-Cu合金与1Cr18Ni9Ti不锈钢真空钎焊接头的组织性能   总被引:1,自引:1,他引:0       下载免费PDF全文
采用Ag-Cu-Ti钎料,控制钎焊温度为910℃,保温时间为20 min,可以实现Mo-Cu合金与1Cr1 8Ni9Ti不锈钢的真空钎焊,接头抗剪强度为75 MPa.采用扫描电镜、能谱分析仪和显微硬度计对Mo-Cu/1 Cr18 Ni9Ti接头组织特征及性能进行分析.结果表明,钎焊接头靠近1Cr18Ni9Ti钢一侧,主要形成Ag-Cu共晶组织和少量的TiC相;靠近Mo-Cu合金一侧,Ag,Cu元素在合金与钎缝间相向扩散,共晶组织消失,以富铜相为主.钎缝的显微硬度明显低于Mo-Cu合金和1Cr18Ni9Ti不锈钢母材,无脆性化合物生成,剪切断口呈现剪切韧窝的形貌特征.  相似文献   

20.
采用BAg72Cu共晶钎料对奥氏体不锈钢与纯铜的真空钎焊工艺进行研究.通过剪切试验、光学显微镜观察、扫描电镜及能谱分析等手段研究了钎焊温度和保温时间对钎焊接头组织和性能的影响.试验表明,钎缝中心区为AgCu共晶组织,两侧界面反应区为铜基固溶体,钎焊温度对钎焊接头的组织和性能影响明显,而保温时间对其影响不明显.当钎焊温度865℃、保温时间10min时,剪切强度最高,达到160 MPa.钎焊温度过低时,冶金作用较弱,接头强度较低;钎焊温度过高时,钎料流淌较多,接头强度也较低.以865℃为钎焊温度,改变保温时间,在10~45 min保温时间内接头的剪切强度变化不大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号