首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用不同工艺对某新型挤压成型Mg-Mn-Ti合金壳体进行了退火热处理,并进行了磨损和腐蚀性能的测试与分析。结果表明:随热处理温度从260℃提高到380℃或热处理时间从2 h延长到8 h,合金壳体的磨损和腐蚀性能都先提高后下降。与260℃热处理相比,320℃热处理时合金壳体的磨损体积减小44%、腐蚀电位正移182 m V;与2 h热处理相比,5 h热处理时机械壳体的磨损体积减小41%、腐蚀电位正移162 m V。合金壳体的热处理温度和时间分别优选为320℃、5 h。  相似文献   

2.
固溶处理温度对铝合金制品性能有重要影响。采用不同温度对Al-6.5Si-0.8Ti-0.5In-0.5Mg合金风机叶片进行固溶处理,并进行了力学性能和耐腐蚀性能的测试与分析。结果表明,随固溶处理温度从510℃提高至570℃,叶片的力学性能和耐腐蚀性能均先提高后下降;与510℃相比,550℃固溶处理时叶片的抗拉强度增加25%,屈服强度增加58%,断后伸长率增加6%,腐蚀电位正移192 mV,腐蚀电流密度减小48%。叶片的固溶处理温度优选为550℃。  相似文献   

3.
采用不同工艺对含锶新型建筑耐候钢09MnCuPTiSr进行了正火处理,并进行了试样耐腐蚀性能和耐磨损性能的测试与分析。结果表明:随正火温度从730℃提高到910℃(正火时间3 h),或随正火时间从1 h延长到5 h(正火温度870℃),耐候钢的耐腐蚀性能和耐磨损性能均先提高后下降。在正火时间3 h时,870℃正火的09MnCuPTiSr钢的腐蚀电位比730℃正移285 m V,磨损体积减小44%。在正火温度870℃时,3 h正火的09MnCuPTiSr钢的腐蚀电位比1 h的正移134 m V,磨损体积减小32%。正火温度优选为870℃,正火时间优选为3 h。  相似文献   

4.
采用不同温度和时间对电动汽车镁轮毂电机散热翅片进行了热处理,并进行了耐腐蚀性能的测试与分析。结果表明:随热处理温度从170℃升高至260℃(保温3 h)或热处理时间从1 h升高至5 h(热处理温度245℃),散热翅片的耐腐蚀性能均先提高后下降;当热处理为245℃保温3 h时,轮毂电机散热翅片的腐蚀电位最正、质量损失率最小、腐蚀电流密度最小,耐腐蚀性能最佳。热处理工艺参数优选为245℃保温3 h。  相似文献   

5.
采用动电位极化和电化学阻抗方法,研究了CT80连续油管钢在不同温度(20,40,60,80℃)的3.5%NaCl溶液中的腐蚀行为.结果表明,随着温度的升高,CT80钢的开路电位呈现先负移后正移的趋势,在60℃时达到最小;CT80钢的自腐蚀电流密度呈先升高后降低的趋势,在60℃时具有最大的自腐蚀电流密度,腐蚀速率最大;CT80钢的极化电阻随温度升高呈先减小后增大的趋势,在60℃时极化电阻最小,相应的腐蚀速率最大.  相似文献   

6.
测试和分析了汽车用Mg-6Al-3Sn-1Mn高强镁合金的性能。结果表明:镁合金的强度随挤压温度和挤压比的增加先增大后减小,而伸长率反之,腐蚀电位随挤压温度和挤压比的增加先正移后负移。380℃挤压温度下的抗拉强度和屈服强度比320℃挤压温度的分别增大了11.26%、15.89%,腐蚀电位正移了51 mV。与挤压比14相比,挤压比22下的抗拉强度和屈服强度分别增大了10.16%、14.81%,腐蚀电位正移了46 mV,耐腐蚀性能先提升后下降。汽车用Mg-6Al-3Sn-1Mn高强镁合金的挤压工艺参数优选为:挤压温度380℃、挤压比22。  相似文献   

7.
为了探索热处理对喷射成形ZA35-3.5Mn合金电化学腐蚀性能的作用规律,采用组织观察、能谱分析及电位扫描技术对不同固溶和时效时间下合金的电化学行为进行了研究.结果表明:在3.5%NaCl溶液中,与未热处理合金相比,经过385℃/4h固溶处理,富锰相全部回溶到基体,增大合金阳极极化,消除腐蚀微电池作用,腐蚀电流密度减小41.2%;再进行120℃/15 h时效处理,合金的腐蚀电流密度减小30.0%,耐腐蚀性增强.  相似文献   

8.
采用不同的温度进行了9Cr18Ce不锈钢机械轴承套圈的锻造,并测试与分析了耐磨损和耐腐蚀性能。结果表明:随始锻温度从1100℃增加至1175℃,终锻温度从915℃增加到975℃,材料的磨损体积先减后增,腐蚀电位先正移后负移。1145℃始锻的试样磨损体积比1100℃始锻的减小40.6%,腐蚀电位正移了0.091V;与915℃终锻相比,960℃终锻使磨损体积减小34.5%,腐蚀电位正移了0.087 V。新型不锈钢机械轴承套圈的锻造温度优选为:1145℃始锻温度、960℃终锻温度。  相似文献   

9.
采用恒电流法、动电位极化法和电化学阻抗技术(EIS)考察了热处理冷却方式对Al-Zn-In合金电化学性能的影响,并初步探讨其腐蚀机制.结果表明:热处理改善了Al-Zn-In合金组织均匀性,显著降低自腐蚀电流密度并使工作电位负移,提高了合金的综合电化学性能.470℃保温4 h后随炉冷却Al-Zn-In合金的工作电位为-1.073 V~-1.078 V,电流效率高达93.9%,腐蚀产物容易脱落,表面腐蚀形貌均匀,可作为高性能的牺牲阳极材料.  相似文献   

10.
对6063铝合金的氟铝酸钠转化膜进行了改性,确定改性后的最佳工艺条件为:氟化钠7.5 g/L,硅酸钠5 g/L,六偏磷酸钠3 g/L,偏钒酸铵5 g/L,pH值3.0~4.0,常温,转化时间20 min。采用该工艺对铝合金进行转化处理,极化曲线测试结果表明,铝合金表面的腐蚀电位正移了大约70 mV,腐蚀电流密度减小了大约90%,耐蚀性显著提高,耐中性盐雾时间可达264 h。  相似文献   

11.
采用不同工艺铸造了AZ91-Cr新型镁合金汽车曲轴后端盖,并进行了组织和耐腐蚀性能的测试与分析。结果表明,随浇注温度从640℃提高到720℃、浇注时间从10 s延长到90 s,后端盖的平均晶粒尺寸均先减小后增大,耐腐蚀性能均先提高后下降。与640℃浇注温度30 s浇注时间比较,680℃浇注温度时的后端盖平均晶粒尺寸减小16μm(48→32μm),腐蚀电位正移了61 mV(-965→-904 mV)。与90 s浇注时间,浇注温度680℃比较,浇注时间30s时的后端盖平均晶粒尺寸减小19μm(51→32μm),腐蚀电位正移了67mV(-971→-904 mV)。AZ91-Cr新型镁合金汽车曲轴后端盖的浇注温度优选为680℃,浇注时间优选为30 s。  相似文献   

12.
采用扫描电子显微镜(SEM)、拉伸试验机、冲击试验机和电化学工作站等研究了回火温度对锻态合金钢的显微组织、硬度、拉伸性能、冲击性能和耐腐蚀性能的影响。结果表明,较低的回火温度下(200℃),虽然试验钢具有较高的硬度、强度和冲击韧性,但是韧塑性较差,而回火温度升至600℃,试验钢的硬度和强度虽有减小,但是具有较高的韧塑性,600℃为获得较好力学性能的适宜回火温度。在回火温度为200~400℃时,试验钢的腐蚀电位较负、腐蚀电流密度较大并具有较小电荷转移电阻;而回火温度为600℃时,试验钢的腐蚀电位最正、腐蚀电流密度最小、电荷转移电阻最大,此时试验钢的腐蚀倾向最小,具有最佳的耐腐蚀性能。  相似文献   

13.
采用不同的热处理工艺对含铟水利机械钻杆材料试样进行了热处理,并进行了耐磨损性能和耐腐蚀性能的测试与分析。结果表明:在试验条件下,随淬火温度从800℃升高到880℃或回火温度从510℃升高到590℃,试样的耐磨损性能和耐腐蚀性能均先提高后下降。与800℃相比,860℃淬火试样的磨损体积减小40.7%,腐蚀电位正移192 m V。与510℃相比,570℃回火试样的磨损体积减小40%,腐蚀电位正移151 m V。试样的淬火温度优选为860℃,回火温度优选为570℃。  相似文献   

14.
采用不同的液态模锻工艺参数对汽车铝轮辋进行了成形,并进行了磨损和腐蚀性能的测试与分析。结果表明:比压为120 MPa时,与660℃浇注相比,720℃浇注试样的磨损体积减小了32%,腐蚀电位正移了116 m V。浇注温度为720℃时,与100 MPa成形的试样相比,120 MPa成形时试样的磨损体积减小了21%,腐蚀电位正移了92 m V。随浇注温度从660℃升高至740℃、比压从100 MPa升高至130 MPa,汽车铝轮辋的耐磨损性能和耐腐蚀性能均先提高后下降。适宜的浇注温度和比压分别为720℃和120 MPa。  相似文献   

15.
测试了Al-Zn牺牲阳极在某生产水不同条件下的开路电位、极化曲线和循环伏安曲线,并结合牺牲阳极表面腐蚀形貌进行了分析。结果表明,随生产水温度升高,牺牲阳极开路电位负移,自腐蚀倾向增大,在所测温度范围内牺牲阳极腐蚀回路的腐蚀速率均受阳极控制,且在48℃时腐蚀电流密度(Jcorr)要比常温下大一个数量级,而当温度为42℃和48℃时,均易产生晶间腐蚀;随生产水pH升高,牺牲阳极开路电位先正移后负移,该腐蚀回路的腐蚀速率由原来的阳极控制变成阴极控制或混合控制,且其大小先减后增。  相似文献   

16.
曹辉  杜恭贺 《机床与液压》2020,48(22):59-63
对Mg-9Al-1Zn-05Ce汽车新型压铸零部件试样进行了压铸成型,并进行了力学性能和耐腐蚀性能的测试和分析。结果表明:随浇注温度的升高和压射速度的加快,试样的抗拉强度、屈服强度先增大后减小,腐蚀电位正移后逐渐负移,伸长率变化幅度较小,力学性能和耐腐蚀性能均先提升后下降;与620 ℃浇注温度压铸时相比,650 ℃浇注温度下的抗拉强度、屈服强度分别增大了1308%、2378%,断后伸长率减小了1%,腐蚀电位正移了43 mV;与1 m/s压射速度压铸时相比,3 m/s压铸下的抗拉强度、屈服强度分别增大了1120%、1645%,断后伸长率减小了08%,腐蚀电位正移了31 mV。Mg-9Al-1Zn-05Ce汽车新型压铸零部件的压铸工艺参数优选为:650 ℃始锻温度、3 m/s压射速度。  相似文献   

17.
《热加工工艺》2021,50(7):92-96
采用不同的浇注温度和比压对AZ31镁合金汽车轮毂进行了液态模锻成形,并进行了显微组织、耐磨损性能和耐腐蚀性能的测试与分析。结果表明:随比压和浇注温度的增加,轮毂试样的平均晶粒尺寸和磨损体积均先减小后增大,腐蚀电位先正移后负移,耐磨损性能和耐腐蚀性能先提升后下降。与30 MPa比压相比较,50 MPa比压时试样的平均晶粒尺寸和磨损体积分别减小了27.39%、41.67%,腐蚀电位正移了36 m V。与680℃浇注温度相比,700℃浇注时试样的平均晶粒尺寸和磨损体积分别减小了33.33%、47.5%,腐蚀电位正移了47 m V。AZ31镁合金汽车轮毂的液态模锻工艺参数优选为:50 MPa比压、700℃浇注温度。  相似文献   

18.
研究了X80管线钢在3.5%NaCl溶液中的电化学腐蚀行为。结果表明:经离子渗氮的样品,表面硬度显著提高,且随渗氮温度的升高而增加;渗氮层的耐蚀性明显优于基体材料,腐蚀电流密度降低一个数量级;腐蚀电位明显正移。当渗氮温度为450 ℃时,样品渗氮层由ε相和少量的γ '相构成,表面硬度约为810 HV,耐蚀性最好,腐蚀电流最小,约为0.56 μA/cm2,腐蚀电位最高,约为-214 mV。当渗氮温度为570 ℃时,样品渗氮层全部为γ '相,表面硬度约为930 HV,耐蚀性明显降低。离子渗氮温度显著影响X80钢表面渗氮层的相组成,引起表面硬度和耐蚀性不同。  相似文献   

19.
AZ31B镁合金磷化工艺研究   总被引:2,自引:0,他引:2  
高焕方  赵春雪  罗天元  李聪 《表面技术》2008,37(4):37-38,56
应用Tafel极化曲线分析方法,对在不同磷化时间及不同磷化温度条件下磷化的AZ31B镁合金的防腐性能进行了研究,此外还研究了磷化膜的存在对AZ31B镁合金表面环氧涂层防腐性能的影响.研究结果表明:磷化时间及磷化温度对AZ31B镁合金磷化膜的防腐性能有较大影响,其最佳磷化时间为5min,最佳磷化温度为50℃.在最佳条件下,磷化膜的腐蚀电流密度最小,腐蚀电位明显正移,且极化电阻最大.此外,磷化膜的存在使环氧涂层在AZ31B镁合金表面的腐蚀电流密度下降了3个数量级,腐蚀电位正向移动了588mV,即磷化膜可提高环氧涂层在AZ31B镁合金表面的防腐性能.  相似文献   

20.
采用不同的挤压温度对Mg-8Al-0.6Zn-0.5Ti-0.3V新型镁合金机械外壳件进行挤压成形试验,并取样进行冲击性能和耐腐蚀性能测试。结果表明:随挤压温度升高,挤压件试样冲击吸收功先增大再减小,腐蚀电位先正移后逐渐负移,单位面积腐蚀失重先减小后增大,冲击性能和耐腐蚀性能先提升后下降。与300℃挤压温度相比,380℃挤压温度试样的冲击吸收功增大了58.97%,腐蚀电位正移了34 mV,单位面积的腐蚀失重减小了37.8%。Mg-8Al-0.6Zn-0.5Ti-0.3V新型镁合金机械外壳件的挤压温度优选为380℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号