首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S. Murugan  M.C. Ramaswamy  G. Nagarajan 《Fuel》2008,87(10-11):2111-2121
Alternate fuels like ethanol, biodiesel, LPG, CNG, etc., have been already commercialised in the transport sector. In this context, pyrolysis of solid waste is currently receiving renewed interest. The disposal of waste tyres can be simplified to a certain extent by pyrolysis. In the present work, the crude tyre pyrolyisis oil (TPO) was desulphurised and then distilled through vacuum distillation. Also, two distilled tyre pyrolysis oil (DTPO)–diesel fuel (DF) blends at lower and higher concentrations were used as fuels in a four stroke single cylinder air cooled diesel engine without any engine modification. The results were compared with diesel fuel (DF) operation. Results indicate that the engine can run with 90% DTPO and 10% diesel fuel.  相似文献   

2.
Increase in energy demand, stringent emission norms and depletion of oil resources led the researchers to find alternative fuels for internal combustion engines. Many alternate fuels like Alcohols, Biodiesel, LPG, CNG etc have been already commercialized in the transport sector. In this context, pyrolysis of solid waste is currently receiving renewed interest. The disposal of waste tyres can be simplified to some extent by pyrolysis. The properties of the Tyre pyrolysis oil (TPO) derived from waste automobile tyres were analyzed and compared with the petroleum products and found that it can also be used as a fuel for compression ignition engine. However, the crude TPO has a higher viscosity and sulphur content. The crude TPO was desulphurised and then distilled through vacuum distillation. In the present work, DTPO-diesel blends were used as an alternate fuel in a diesel engine without any engine modification. This paper presents the studies on the performance, emission and combustion characteristics of a single cylinder four stroke air cooled DI diesel engine running with the Distilled Tyre pyrolysis oil (DTPO).  相似文献   

3.
An alternative fuel production was performed by pyrolysis of waste vehicle tires under nitrogen (N2) environment and with calcium hydroxide (Ca(OH)2) as catalyst. The sulfur content of liquids obtained were reduced by using Ca(OH)2. The liquid fuel of waste vehicle tires(TF) was then used in a diesel engine to blend with petroleum diesel fuel by 5%(TF5), 10%(TF10), 15%(TF15), 25%(TF25), 35%(TF35), 50%(TF50), and 75%(TF75) wt. and pure (TF100). Performance characteristics such as engine power, engine torque, brake specific fuel consumption (bsfc) and exhaust temperature and emission parameters such as oxides of nitrogen (NOx), carbon monoxides (CO), total unburned hydrocarbon (HC), sulfur dioxides (SO2) and smoke opacity of the engine operation with TF and blend fuels of TF-diesel were experimentally investigated and compared with those of petroleum diesel fuel. It was concluded that the blends of pyrolysis oil of waste tires TF5, TF10, TF25 and TF35 can efficiently be used in diesel engines without any engine modifications. However, the blends of TF50, TF75 and TF100 resulted considerably to high CO, HC, SO2 and smoke emissions.  相似文献   

4.
This work investigates the impacts on fuel consumption and exhaust emissions of a diesel power generator operating with biodiesel. Fuel blends with 5%, 20%, 35%, 50%, and 85% of soybean biodiesel in diesel oil, and fuel blends containing 5%, 20%, and 35% of castor oil biodiesel in diesel oil were tested, varying engine load from 9.6 to 35.7 kW. Specific fuel consumption (SFC) and the exhaust concentrations of carbon dioxide (CO2), carbon monoxide (CO), and hydrocarbons (HC) were evaluated. The engine was kept with its original settings for diesel oil operation. The results showed increased fuel consumption with higher biodiesel concentration in the fuel. Soybean biodiesel blends showed lower fuel consumption than castor biodiesel blends at a given concentration. At low and moderate loads, CO emission was increased by nearly 40% and over 80% when fuel blends containing 35% of castor oil biodiesel or soybean biodiesel were used, respectively, in comparison with diesel oil. With the load power of 9.6 kW, the use of fuel blends containing 20% of castor oil biodiesel or soybean biodiesel increased HC emissions by 16% and 18%, respectively, in comparison with diesel oil. Exhaust CO2 concentration did not change significantly, showing differences lower than ±3% of the values recorded for diesel oil operation, irrespective of biodiesel type, concentration and the load applied. The results demonstrate that optimization of fuel injection system is required for proper engine operation with biodiesel.  相似文献   

5.
Ekrem Buyukkaya 《Fuel》2010,89(10):3099-3105
Experimental tests were investigated to evaluate the performance, emission and combustion of a diesel engine using neat rapeseed oil and its blends of 5%, 20% and 70%, and standard diesel fuel separately. The results indicate that the use of biodiesel produces lower smoke opacity (up to 60%), and higher brake specific fuel consumption (BSFC) (up to 11%) compared to diesel fuel. The measured CO emissions of B5 and B100 fuels were found to be 9% and 32% lower than that of the diesel fuel, respectively. The BSFC of biodiesel at the maximum torque and rated power conditions were found to be 8.5% and 8% higher than that of the diesel fuel, respectively. From the combustion analysis, it was found that ignition delay was shorter for neat rapeseed oil and its blends tested compared to that of standard diesel. The combustion characteristics of rapeseed oil and its diesel blends closely followed those of standard diesel.  相似文献   

6.
R.D. Misra  M.S. Murthy 《Fuel》2011,90(7):2514-2518
Soapnut (Sapindus mukorossi) oil, a nonedible straight vegetable oil was blended with petroleum diesel in various proportions to evaluate the performance and emission characteristics of a single cylinder direct injection constant speed diesel engine. Diesel and soapnut oil (10%, 20%, 30% and 40%) fuel blends were used to conduct short-term engine performance and emission tests at varying loads in terms of 25% load increments from no load to full loads. Tests were carried out for engine operation and engine performance parameters such as fuel consumption, brake thermal efficiency, and exhaust emissions (smoke, CO, UBHC, NOx, and O2) were recorded. Among the blends SNO 10 has shown a better performance with respect to BTE and BSEC. All blends have shown higher HC emissions after about 75% load. SNO 10 and SNO 20 showed lower CO emissions at full load. NOx emission for all blends was lower and SNO 40 blend achieved a 35% reduction in NOx emission. SNO 10% has an overall better performance with regards to both engine performance and emission characteristics.  相似文献   

7.
《Fuel》2005,84(12-13):1543-1549
A blend of 20% (v/v) ethanol/methyl soyate was prepared and added to diesel fuel as an oxygenated additive at volume percent levels of 15 and 20% (denoted as BE15 and BE20). We also prepared a blend containing 20% methyl soyate in diesel fuel (denoted as B20). The fuel blends that did not have any other additive were stable for up to 3 months. Engine performance and emission characteristics of the three different fuels in a diesel engine were investigated and compared with the base diesel fuel. Observations showed that particulate matter (PM) emission decreased with increasing oxygenate content in the fuels but nitrogen oxides (NOx) emissions increased. The diesel engine fueled by BE20 emitted significantly less PM and a lower Bosch smoke number but the highest NOx among the fuel blends tested. All the oxygenate fuels produced moderately lower CO emissions relative to diesel fuel. The B20 blend emitted less total hydrocarbon (THC) emissions compared with base diesel fuel. This was opposite to the fuel blends containing ethanol (BE15, BE20), which produced much higher THC emission.  相似文献   

8.
O?uzhan Do?an 《Fuel》2011,90(7):2467-9430
Nitrogen oxides and smoke emissions are the most significant emissions for the diesel engines. Especially, fuels containing high-level oxygen content can have potential to reduce smoke emissions significantly. The aim of the present study is to evaluate the influence of n-butanol/diesel fuel blends (as an oxygenation additive for the diesel fuel) on engine performance and exhaust emissions in a small diesel engine. For this aim five-test fuels, B5 (contains 5% n-butanol and 95% diesel fuel in volume basis), B10, B15, B20 and neat diesel fuel, were prepared to test in a diesel engine. Tests were performed in a single cylinder, four stroke, unmodified, and naturally aspirated DI high speed diesel engine at constant engine speed (2600 rpm) and four different engine loads by using five-test fuels. The experimental test results showed that smoke opacity, nitrogen oxides, and carbon monoxide emissions reduced while hydrocarbon emissions increased with the increasing n-butanol content in the fuel blends. In addition, there is an increase in the brake specific fuel consumption and in the brake thermal efficiency with increasing n-butanol content in fuel blends. Also, exhaust gas temperature decreased with increasing n-butanol content in the fuel blends.  相似文献   

9.
Safflower seed oil was chemically treated by the transesterification reaction in methyl alcohol environment with sodium hydroxide (NaOH) to produce biodiesel. The produced biodiesel was blended with diesel fuel by 5% (B5), 20% (B20) and 50% (B50) volumetrically. Some of important physical and chemical fuel properties of blend fuels, pure biodiesel and diesel fuel were determined. Performance and emission tests were carried out on a single cylinder diesel engine to compare biodiesel blends with petroleum diesel fuel. Average performance reductions were found as 2.2%, 6.3% and 11.2% for B5, B20 and B50 fuels, respectively, in comparison to diesel fuel. These reductions are low and can be compensated by a slight increase in brake specific fuel consumption (Bsfc). For blends, Bsfcs were increased by 2.8%, 3.9% and 7.8% as average for B5, B20 and B50, respectively. Considerable reductions were recorded in PM and smoke emissions with the use of biodiesel. CO emissions also decreased for biodiesel blends while NOx and HC emissions increased. But the increases in HC emissions can be neglected as they have very low amounts for all test fuels. It can be concluded that the use of safflower oil biodiesel has beneficial effects both in terms of emission reductions and alternative petroleum diesel fuel.  相似文献   

10.
This paper discusses the physical-chemical properties of ethanol-diesel fuel blends. The attention is focused on the properties which influence the injection and engine characteristics significantly. Main properties have been investigated experimentally. The analysis of experimentally obtained fuel properties of tested fuels and their influence on engine characteristics are presented. Physical and chemical properties of diesel fuel and ethanol-diesel fuel blends were measured according to requirements and test methods for diesel fuel (EN590, 2003). The tested fuels were neat mineral diesel fuel (D100), 5% (v/v) ethanol/diesel fuel blend (E05D95), 10% (v/v) ethanol-diesel fuel blend (E10D90) and 15% (v/v) ethanol-diesel fuel blend (E15D85). It has been proved that, for ethanol-diesel fuel blends, some additives are necessary to keep stability under low temperature conditions. Also, cold weather properties test, such as cloud point and pour point tests are negatively affected by phase separation. The rest of the properties, excepting flash point, were within diesel fuel standard specifications. Based on this study, it can be concluded that using additives to avoid phase separation and to raise flash point, blends of diesel fuel with ethanol up to 15% can be used to fuel diesel engines if engine performance tests corroborate it.  相似文献   

11.
Fuel consumption and cold start characteristics of a production vehicle fuelled with blends of N. 2 diesel oil (500 ppm sulfur content), soybean biodiesel (3%, 5%, 10%, and 20%) and hydrous ethanol (2% and 5%) were compared. A wagon-type vehicle equipped with a four-cylinder, 1.3-l, 63 kW diesel engine was tested in a cold chamber at the temperature of −5 °C for the cold start tests. Fuel consumption tests were performed following the 1975 US Federal Test Procedure (FTP-75). The results showed that the cold start time was satisfactory for all fuel blends tested, but it was longer for the blend containing 20% of soybean biodiesel (B20) in comparison with the blends with lower biodiesel concentration. The cold start time also increased with increasing with increasing ethanol content in the fuel blend. Specific fuel consumption was not affected by increasing biodiesel concentration in the blend or by the use of 2% of ethanol as an additive. However, the use of 5% of ethanol concentration in the B20 blend resulted in increased specific fuel consumption.  相似文献   

12.
An experimental study is conducted to evaluate the use of sunflower, cottonseed, corn and olive straight vegetable oils (SVO) of Greek origin, in blends with diesel fuel at proportions of 10 vol.% and 20 vol.%, in a fully instrumented, six-cylinder, turbocharged and after-cooled, heavy duty (HD), direct injection (DI), ‘Mercedes-Benz’, mini-bus engine installed at the authors’ laboratory. The series of tests are conducted using each of the above blends, with the engine working at two speeds and three loads. Fuel consumption, exhaust smokiness and exhaust regulated gas emissions such as nitrogen oxides (NOx), carbon monoxide (CO) and total unburned hydrocarbons (HC) are measured. With reference to the corresponding neat diesel fuel operation, the vegetable oil blends show reduction of emitted smoke with slight increase of NOx and effectively unaffected thermal efficiency. Theoretical aspects of diesel engine combustion, combined with the very widely differing physical and chemical properties of the vegetable oils against those for the diesel fuel, aid to the correct interpretation of the observed engine behavior.  相似文献   

13.
Yi Ren  Haiyan Miao  Yage Di  Deming Jiang  Ke Zeng  Bing Liu  Xibin Wang 《Fuel》2008,87(12):2691-2697
Combustion and emissions of a DI diesel engine fuelled with diesel-oxygenate blends were investigated. The results show that there exist the different behaviors in the combustion between the diesel-diglyme blends and the other five diesel-oxygenate blends as the diglyme has the higher cetane number than that of diesel fuel while the other five oxygenates have the lower cetane number than that of diesel fuel. The smoke concentration decreases regardless of the types of oxygenate additives, and the smoke decreases with the increase of the oxygen mass fraction in the blends without increasing the NOx and engine thermal efficiency. The reduction of smoke is strongly related to the oxygen-content of blends. CO and HC concentrations decrease with the increase of oxygen mass fraction in the blends. Unlike conventional diesel engines fueled with pure diesel fuel, engine operating on the diesel-oxygenate blends presents a flat NOx/Smoke tradeoff curve versus oxygen mass fraction.  相似文献   

14.
Hydrotreating catalysis is becoming a promising alternative to transesterification for the production of biofuels derived from vegetable oils. They have potential advantages with respect to both biodiesel fuels and petroleum-derived diesel fuels in terms of production costs, engine emissions and adaptability to current engine designs, but they have also some limitations which may restrict their capability to replace diesel fuels. Those fuel properties considered the most restrictive ones were measured on different blends of HVO (selected among the variety of names given to these fuels) with a winter ultra low sulfur diesel fuel (in 10, 20, 25, 30, 35, 40, 45, 50, 55, and 75 vol.%) in order to propose some blending strategies to optimize engine performance and emissions, to protect the engine components and to keep the vehicle operability. The results obtained show that the main restrictions are imposed by lubricity and cetane number, and, in case of cold regions, also by cold flow properties. A compromise between lubricity and derived cetane number would lead to a recommendation for low or medium HVO concentrations, and blends with concentrations above 50% would not be recommended. Density and viscosity would not impose direct blending restrictions, although the reductions in density could provide some economic savings and some flexibility to refineries. The loss of heating value per unit volume (and consequently the expected increase in fuel consumption) would be lower than 3% in blends up to 50% in volume. Finally, the sooting tendency of the blends is sharply reduced, indicating lower engine PM emissions and reduced need for regeneration of diesel particulate filters.  相似文献   

15.
T. Leevijit  G. Prateepchaikul 《Fuel》2011,90(4):1487-1491
The performance and emissions of an indirect injection (IDI)-turbo automobile diesel engine operated with diesel and blends of degummed-deacidified mixed crude palm oil in diesel at portions of 20, 30, and 40 vol.% are examined and compared at various loads and speeds. Although fuel properties of the tested blends do not exactly meet all regulations of Thailand, they are all able to operate the engine. Comparing this with diesel, especially at full loads, shows that all blends produce the same maximum brake torque and power. A higher blending portion results in a little higher brake specific fuel consumption (+4.3% to +7.6%), a slightly lower brake thermal efficiency (-3.0% to -5.2%), a slightly lower exhaust gas temperature (−2.7% to −3.4%), and a significantly lower amount of black smoke (−30% to −45%). The level of carbon monoxide from the 20 vol.% blend is significantly lower (−70%), and the levels of nitrogen oxides from all blends are little higher.  相似文献   

16.
Frank Lujaji  Akos Bereczky 《Fuel》2011,90(2):505-510
Emission problems associated with the use of fossil fuels have led to numerous research projects on the use of renewable fuels. The aim of this study is to evaluate the effects of blends containing croton mogalocarpus oil (CRO)-Butanol (BU) alcohol-diesel (D2) on engine performance, combustion, and emission characteristics. Samples investigated were 15%CRO-5%BU-80%D2, 10%CRO-10%BU-80%D2, and diesel fuel (D2) as a baseline. The density, viscosity, cetane number CN, and contents of carbon, hydrogen, and oxygen were measured according to ASTM standards. A four cylinder turbocharged direct injection (TDI) diesel engine was used for the tests. It was observed that brake specific energy consumption (BSEC) of blends was found to be high when compared with that of D2 fuel. Butanol containing blends show peak cylinder pressure and heat release rate comparable to that of D2 on higher engine loads. Carbon dioxide (CO2) and smoke emissions of the BU blends were lower in comparison to D2 fuel.  相似文献   

17.
M. Gumus 《Fuel》2010,89(10):2802-2814
In the present study, hazelnut (Corylus avellana L.) kernel oil was transesterified with methanol using potassium hydroxide as catalyst to obtain biodiesel and a comprehensive experimental investigation of combustion (cylinder gas pressure, rate of pressure rise, ignition delay) and heat release (rate of heat release, cumulative heat release, combustion duration and center of heat release) parameters of a direct injection compression ignition engine running with biodiesel and its blends with diesel fuel was carried out. Experiment parameters included the percentage of biodiesel in the blend, engine load, injection timing, injection pressure, and compression ratio. Results showed that hazelnut kernel oil methyl ester and its blends with diesel fuel can be used in the engine without any modification and undesirable combustion and heat release characteristics were not observed. The modifications such as increasing of injection timing, compression ratio, and injection pressure provided significant improvement in combustion and heat release characteristics.  相似文献   

18.
Aviation fuel JP-5 and biodiesel on a diesel engine   总被引:1,自引:0,他引:1  
Naval aviation turbine fuel, JP-5, has been accepted as alternative to JP-8 in the frame of the Single Fuel Policy. This has resulted in some ongoing research on JP-5 fuel for its application as a naval single fuel. The necessity to cope with the environmental problems identified in the process of implementing the Single Fuel Policy as well as the strict requirements of modern diesel engines has lead to the need of improved single fuel quality. The development of biomass derived substitutes for diesel, such as biodiesel, is a possible attractive solution. The present paper is an effort to evaluate JP-5 along with diesel and biodiesel for use in a diesel engine. These fuels were used alone and in various mixture fractions in a single cylinder stationary diesel engine in order to evaluate their performance under defined operating conditions of the engine. JP-5 reduced both the NOx and particulate matter emissions as compared to the reference fuel case. Biodiesel significantly lowered particulate emissions, but slightly increased NOx emissions and fuel consumption. Fuel sulfur content has an undesired effect on smoke opacity. Biodiesel increased the fuel consumption when added to petroleum fuels and the increase was larger at high engine loads. Diesel and JP-5 showed similar fuel consumption, with diesel consumption increasing at high engine loads. Ternary blends showed similar behavior. The blends with lower biodiesel content showed lower volumetric fuel consumption.  相似文献   

19.
Waste anchovy fish oils transesterification was studied with the purpose of achieving the conditions for biodiesel usage in a single cylinder, direct injection compression ignition. With this purpose, the pure biodiesel produced from anchovy fish oil, biodiesel-diesel fuel blends of 25%:75% biodiesel-diesel (B25), 50%:50% biodiesel-diesel (B50), 75%:25% biodiesel-diesel (B75) and petroleum diesel fuels were used in the engine to specify how the engine performance and exhaust emission parameters changed. The fuel properties of test fuels were analyzed. Tests were performed at full load engine operation with variable speeds of 1000, 1500, 2000 and 2500 rpm engine speeds. As results of investigations on comparison of fuels with each other, there has been a decrease with 4.14% in fish oil methyl ester (FOME) and its blends' engine torque, averagely 5.16% reduction in engine power, while 4.96% increase in specific fuel consumption have been observed. On one hand there has been average reduction as 4.576%, 21.3%, 33.42% in CO2, CO, HC, respectively; on the other hand, there has been increase as 9.63%, 29.37% and 7.54% in O2, NOx and exhaust gas temperature has been observed. It was also found that biodiesel from anchovy fish oil contains 37.93 wt.% saturated fatty acids which helps to improve cetane number and lower NOx emissions. Besides, for biodiesel and its blends, average smoke opacity was reduces about 16% in comparison to D2. It can be concluded that waste anchovy fish obtained from biodiesel can be used as a substitute for petroleum diesel in diesel engines.  相似文献   

20.
Dynamometer engine tests at steady-state conditions and a wear characteristics study were carried out on an indirect-injection diesel engine with palm oil diesel (POD) and its emulsions. The POD fuel was obtained in commercial form, and its emulsions were created by mixing POD fuel to contain 5 and 10% of water by volume. Variations in the engine’s performance characteristics were determined from the results of steady-state tests carried out at fifteen selected torque-speed matrix points of the engine’s performance map. The wear characteristics tests were performed by running the engine at half throttle setting for twenty hours for each fuel system. Then a desk-top comparison study was performed between the base-line fuel system of ordinary diesel (OD), POD, and its emulsions. Promising results have been obtained. Neither the lower cetane number of POD fuel nor its emulsification with water presented obstacles to the operation of the diesel engine during a series of steady-state engine tests and the twenty-hour endurance tests. Engine performance and fuel consumption for POD and its emulsions are comparable with those of OD fuel. Accumulations of wear metal debris in crank-case oil samples were lower with POD and its emulsions than with baseline OD fuel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号