首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some biomass fuels produce more NOx than coal on the basis of heating value, giving rise to the necessity and importance of controlling NOx emission in biomass combustion. The present study investigated the NO reduction over biomass char in a fixed bed quartz reactor in the temperature range of 973–1173 K. The reaction rates of three biomass chars (sawdust, rice husk and corn straw) with NO were compared with Datong bituminous coal char. The results show that the reaction orders of biomass chars for NO are of fractional order and independent of temperature. Biomass chars are more active in reducing NO than coal char. The characteristics of biomass char affect NO conversion. Biomass char formed at high pyrolysis temperature, especially large in particle size, is less active in reducing NO. To some extent, increase of reaction temperature and char loading enhance NO conversion. There exists an optimum bed height for the highest NO conversion. Moreover, NO reduction over biomass char is also enhanced in the presence of CO, O2 and SO2.  相似文献   

2.
The devolatilization behavior of a bituminous coal and different biomass fuels currently applied in the Dutch power sector for co-firing was experimentally investigated. The volatile composition during single fuel pyrolysis as well as during co-pyrolysis was studied using TG-FTIR characterization with the focus on the release patterns and quantitative analysis of the gaseous bound nitrogen species. It was shown that all investigated biomass fuels present more or less similar pyrolysis behavior, with a maximum weight loss between 300 and 380 °C. Woody and agricultural biomass materials show higher devolatilization rates than animal waste. When comparing different fuels, the percentage of fuel-bound nitrogen converted to volatile bound-N species (NH3, HCN, HNCO) does not correlate with the initial fuel-N content. Biomass pyrolysis resulted in higher volatile-N yields than coal, which potentially indicates that NOx control during co-firing might be favored. No significant interactions occurred during the pyrolysis of coal/biomass blends at conditions typical of TG analysis (slow heating rate). Evolved gas analysis of volatile species confirmed the absence of mutual interactions during woody biomass co-pyrolysis. However, non-additive behavior of selected gas species was found during slaughter and poultry litter co-pyrolysis. Higher CH4 yields between 450 and 750 °C and higher ammonia and CO yields between 550 and 900 °C were measured. Such a result is likely to be attributed to catalytic effects of alkali and alkaline earth metals present in high quantity in animal waste ash. The fact that the co-pyrolysis of woody and agricultural biomass is well modeled by simple addition of the individual behavior of its components permits to predict the mixture's behavior based on experimental data available for single fuels. On the other hand, animal waste co-pyrolysis presented in some cases synergistic effects in gas products although additive behavior occurred for the solid phase.  相似文献   

3.
Co-firing of biomass with pulverised coal at existing coal power stations remains a practical option available to power plant operators and is being widely adopted as one of the main technologies for reducing greenhouse gas emissions. However, there is a range of technological problems that are not well understood. This paper presents experimental investigations into the co-firing of pulverised coal directly co-milled with 5–20% biomass on a 3 MWth Combustion Test Facility. A number of combustion parameters, including flame temperature and oscillation frequency and particle size distribution, were measured under a range of co-firing conditions. The gas species within the flame and fly ash in flue gas were also sampled and analysed. The experimental data collected are used to study the impact of biomass additions to pulverised coal on the combustion characteristics of the co-firing process. The relationships between the flame characteristics, gas species and ash deposition of the furnace are investigated. The results suggest that, due to the varying physical and chemical properties of the biomass fuels, the biomass additions have impact on the combustion characteristics in a very complicated way. It has been found that the biomass addition to coal would improve the combustion efficiency because of the lower CO concentrations and higher char burnout level in co-firing. In addition, NOx emission has been found closely linked to the flame stability, and SOx emission reduced in general for all co-firing cases.  相似文献   

4.
A wire mesh reactor was used to investigate the devolatilization process of coal particle during entrained flow gasification. Coal from Indonesia East Kalimantan mine, which has high moisture and high volatile matter, was chosen as a sample. Experiments were carried out at the heating rate of 1,000 °C/s and isothermal condition was kept at peak temperature under atmospheric pressure. The char, tar and gas formation characteristics of the coal as well as the composition of the gas components at peak temperatures were determined. The experimental results showed that devolatilization process terminated when temperature reached above 1,100 °C. Most of tar was formed at about 800 °C, while the rate of tar formation decreased gradually as the temperature increased. CH4 was observed at temperatures above 600 °C, whereas H2 was detected above 1,000 °C. The amount of formed gases such as H2, CO, CH4 and C n H m increased as the temperature increased. From the characteristics of devolatilization with residence time, it was concluded that devolatilization terminated within about 0.7 second when the temperature reached 1,000 °C. As the operating temperature in an entrained flow gasifier is higher than ash melting temperature, it is expected that the devolatilization time of high volatile coal should be less than one second in an entrained flow gasifier.  相似文献   

5.
Investigations into the co-pyrolytic behaviours of different plastics (high density polyethylene, low density polyethylene and polypropylene), low volatile coal and their blends with the addition of the plastic of 5 wt.% have been conducted using a thermogravimetric analyzer. The results indicated that plastic was decomposed in the temperature range 438–521 °C, while the thermal degradation temperature of coal was 174–710 °C. The overlapping degradation temperature interval between coal and plastic was favorable for hydrogen transfer from plastic to coal. The difference of weight loss (?W) between experimental and theoretical ones, calculated as an algebraic sum of those from each separated component, was 2.0–2.7% at 550–650 °C. These experimental results indicated a synergistic effect during plastic and coal co-pyrolysis at the high temperature region. In addition, a kinetic analysis was performed to fit thermogavimetric data, the estimated kinetic parameters (activation energies and pre-exponential factors) for coal, plastic and their blends, were found to be in the range of 35.7–572.8 kJ/mol and 27–1.7 × 1038 min− 1, respectively.  相似文献   

6.
Devolatilization of five coals having volatile matter in the range of 31 to 41% was studied in argon and in air under fluidized bed conditions. The diameter of the coal particles varied between 4 and 9.5 mm. The variation of devolatilization time with particle diameter was expressed by the correlation, tv = Advn. The superficial gas velocity was found to have a significant effect on the rate of devolatilization. The devolatilization rate increased with the increase in the oxygen concentration in the fluidizing gas. The correlations developed in this study fitted the mass versus time profiles of the coal particles satisfactorily. The same correlations were found to be appropriate for predicting devolatilization of a batch of coal particles. The correlations developed in the present study will be useful for the design of fluidized bed combustors.  相似文献   

7.
Air gasification of different biomass fuels, including forestry (pinus pinaster pruning) and agricultural (grapevine and olive tree pruning) wastes as well as industry wastes (sawdust and marc of grape), has been carried out in a circulating flow gasifier in order to evaluate the potential of using these types of biomass in the same equipment, thus providing higher operation flexibility and minimizing the effect of seasonal fuel supply variations. The potential of using biomass as an additional supporting fuel in coal fuelled power plants has also been evaluated through tests involving mixtures of biomass and coal–coke, the coke being a typical waste of oil companies. The effect of the main gasifier operating conditions, such as the relative biomass/air ratio and the reaction temperature, has been analysed to establish the conditions allowing higher gasification efficiency, carbon conversion and/or fuel constituents (CO, H2 and CH4) concentration and production. Results of the work encourage the combined use of the different biomass fuels without significant modifications in the installation, although agricultural wastes (grapevine and olive pruning) could to lead to more efficient gasification processes. These latter wastes appear as interesting fuels to generate a producer gas to be used in internal combustion engines or gas turbines (high gasification efficiency and gas yield), while sawdust could be a very adequate fuel to produce a H2-rich gas (with interest for fuel cells) due to its highest reactivity. The influence of the reaction temperature on the gasification characteristics was not as significant as that of the biomass/air ratio, although the H2 concentration increased with increasing temperature.  相似文献   

8.
Steam gasification experiments were performed using a low-rank coal from South Australia, a marine microalga, and a blend of leached microalgal biomass and coal, in a spouted, fluidized bed reactor. The effect of different operating conditions – air-to-fuel ratio (A/F), steam-to-fuel ratio (S/F) and bed temperature (Tb) – on the producer gas composition was investigated. Producer gas compositions were analyzed and samples of bed material were also examined to identify ash components formed during each experiment. The optimum operating conditions for coal gasification, in this system, were identified to occur with A/F = 1.82, S/F = 0.75 and Tb = 850 °C. These conditions resulted in a producer gas with the highest heating value (per mass of fuel fed), the highest extent of carbon conversion and the optimum H2:CO ratio for Fischer–Tropsch synthesis. In addition, preliminary attempts to gasify a sun-dried marine microalga are reported. The dried biomass, sieved to 1.0–3.35 mm, was gasified with air and steam. Preliminary experiments, utilizing the as-received biomass, proved unsuccessful due to rapid bed sintering. Leaching of the algal biomass to remove the extra-cellular salt and co-gasification of the resultant biomass (10 wt%) with low-rank coal also proved unsuccessful due primarily to blockages of the downstream product lines most likely due to attrition of the algae feed in the screw feeder and elutriation from the bed.  相似文献   

9.
The carbon conversion of different solid fuels (i.e. beech wood, fir wood, bituminous coal) was investigated in the freeboard of a laboratory-scale fluidized bed combustor by in situ tunable diode laser absorption spectroscopy. A room temperature continuous wave InGaAsSb/AlGaAsSb quantum well ridge diode laser emitting at 2.3-2.35 μm was wavelength tuned at 300 Hz to determine simultaneously CH4 and CO during devolatilization and char combustion in situ 10 mm above the fuel particles. The lower detection limit was 0.2 vol% (5000 ppm m) for both species. In addition, CO, CO2 and O2 were determined ex situ by conventional methods.The experimental results obtained for the bituminous coal were compared to a detailed chemical kinetic model.The in situ measurements proved to be advantageous compared to conventional ex situ concentration measurements. The calculations confirm the determination of the primary products of solid fuel combustion during devolatilization and char combustion. A rather simple model for the devolatilization products was proven to describe well the release rates of CH4 and CO for the bituminous coal.  相似文献   

10.
《Fuel Processing Technology》2005,86(11):1175-1193
In this study, a bubbling fluidized bed combustor (BFBC) of 102 mm inside diameter and 900 mm height was used to investigate the combustion characteristics of peach and apricot stones produced as a waste from the fruit juice industry. A lignite coal was also burned in the same combustor. The combustion characteristics of the wastes were compared with that of a lignite coal that is most widely used in Turkey. On-line concentrations of O2, CO, CO2, SO2, NOX and total hydrocarbons (CmHn) were measured in the flue gas during combustion experiments. By changing the operating parameters (excess air ratio, fluidization velocity, and fuel feed rate), the variation of emissions of various pollutants was studied. Temperature distribution along the bed was measured with thermocouples.During the combustion tests, it was observed that the volatile matter from peach and apricot stones quickly volatilizes and mostly burn in the freeboard. The temperature profiles along the bed and the freeboard also confirmed this phenomenon. It was found that as the volatile matter of fruit stones increases, the combustion takes place more in the freeboard region.The results of this study have shown that the combustion efficiencies ranged between 98.8% and 99.1% for coal, 96.0% and 97.5% for peach stone and 93.4% and 96.3% for apricot stones. The coal has zero CO emission, but biomass fuels have very high CO emission which indicates that a secondary air addition is required for the system. SO2 emission of the coal is around 2400–2800 mg/Nm3, whereas the biomass fuels have zero SO2 emission. NOX emissions are all below the limits set by the Turkish Air Quality Control Regulation of 1986 (TAQCR) for all tests. As the results of combustion of two biomass fuels are compared with each other, peach stones gave lower CO and NOX emissions but the SO2 emissions are a little higher than for apricot stones. These results suggest that peach and apricot stones are potential fuels that can be utilized for clean energy production in small-scale fruit juice industries by using BFBC.  相似文献   

11.
The total development trend in the world is towards continuously lower of sulfur content as a quality standard of diesel fuels. Integrating of an oxidative desulfurization unit with a conventional hydrotreating unit can bring benefits to producing low and/or ultra-low sulfur diesel fuels. Using the hydrotreated Middle East diesel fuel as a feedstock, four processes of the oxidative desulfurization have been studied: a hydrogen peroxide–acetic acid system and a Fenton's reagent system both without/with ultrasound. Results showed that the oxidative desulfurization reaction mechanics fitted apparent first-order kinetics. The addition of Fenton's reagent could enhance the oxidative desulfurization efficiency for diesel fuels and sono-oxidation treatment in combination with Fenton's reagent shows a good synergistic effect. Under our best operating condition for the oxidative desulfurization: temperature 313 K, ultrasonic power 200 W, ultrasonic frequency 28 kHz, Fe2+/H2O2 0.05 mol/mol, pH 2.10 in aqueous phase and reaction time 15 min, the sulfur content in the diesel fuels was decreased from 568.75 μg/g to 9.50 μg/g.  相似文献   

12.
The thermo-responsive behavior of a unique biocompatible polymer, poly(N-substituted α/β-asparagine) derivative (PAD), has been studied with several NMR methods. The 1H and 13C solution NMR measurements of the PAD in DMSO-d6 were used to investigate the isolated polymer and perform spectral assignments. By systematic addition of D2O we have tracked structural changes due to aggregation and observed contraction of hydrophilic side chains. Solution and cross polarization/magic angle spinning (CP/MAS) 13C NMR approaches were implemented to investigate the aggregates of the PAD aqueous solution during the liquid to gel transition as the temperature was increased. At temperatures near 20 °C, all of the peaks from the PAD were observed in the 13C CP/MAS and 13C solution NMR spectra, indicating the presence of polymer chain nodes. Increasing the temperature to 40 °C resulted in a partial disentanglement of the nodes due to thermal agitation and further heating resulted in little to no additional structural changes. Deuterium T1T2 and T2T2 two-dimensional relaxation spectroscopies using an inverse Laplace transform, were also implemented to monitor the water–PAD interaction during the phase transition. At temperatures near 20 °C the dynamical characteristics of water were manifested into one peak in the deuterium T1T2 map. Increasing the temperature to 40 °C resulted in several distinguishable reservoirs of water with different dynamical characteristics. The observation of several reservoirs of water at the temperature of gel formation at 40 °C is consistent with a physical picture of a gel involving a network of interconnected polymer chains trapping a fluid. Further increase in temperature to 70 °C resulted in two non-exchanging water reservoirs probed by deuterium T2T2 measurements.  相似文献   

13.
The present work deals with pre-reforming of logistic hydrocarbon fuel (jet fuel) as a part of an integrated approach to developing an on-board fuel reformer for use in a micro-solid-oxide fuel cell system. The purpose of doing pre-reforming is to ensure carbon-free reformulation of JP-8 jet fuel into hydrogen and carbon monoxide for use in a micro-solid-oxide fuel cell. Several model jet fuels have been tested for the pre-reforming at low temperature (450–550 °C) in a lab-scale reforming reactor. Proper temperature control and pre-mixing of feed fuels and steam have been found to be important for the prevention of coke formation prior to pre-reforming. Both noble metal and base-metal catalysts have been prepared and tested. As compared with an Al2O3-supported Ni catalyst, supported Rh catalysts show not only high activity but also high resistance to deactivation due to carbon formation. Removal of residual Cl from Rh/CeO2–Al2O3 improves the metal dispersion and the pre-reforming activity. The reformates from the current pre-reformer contain mainly CH4, CO, H2, in which CH4 can be further converted to H2 and CO by subsequent main-reforming.  相似文献   

14.
M. Sreekanth  Ajit Kumar Kolar 《Fuel》2010,89(5):1050-1055
This work presents the results of experiments conducted to determine the mass loss characteristics of a cylindrical wood particle undergoing devolatilization under oxidation conditions in a bubbling fluidized bed combustor. Cylindrical wood particles having five different sizes ranging from 10 to 30 mm and aspect ratio (l/d = 1) have been used for the study. Experiments were conducted in a lab scale bubbling fluidized bed combustor having silica sand as the inert bed material and air as the fluidizing medium. Total devolatilization time and mass of wood/char at different stages of devolatilization have been measured. Studies have been carried out at three different bed temperatures (Tbed = 750, 850 and 950 °C), two inert bed material sizes (mean size dp = 375 and 550 μm) and two fluidizing velocities (u = 5umf and u = 10umf). Devolatilization time is most influenced by the initial wood size and bed temperature. Most of the mass is lost during the first half of the devolatilization process. There was no clear influence of the fluidization velocity and bed particle size on the various parameters studied. The apparent kinetics estimated from the measured mass history show that the activation energy varied narrowly between 15 and 27 kJ/mol and the pre-exponential factor from 0.11 and 0.45 s−1 for the wood sizes considered.  相似文献   

15.
Low rank coal is currently under-utilised because of its low calorific value and high moisture and sulphur content. Its solubilisation by both bacterial and fungal cultures has been reported, the latter more commonly. Coal biosolubilisation processes have potential to convert low rank coal to either a clean, cost-effective energy source or complex aromatic compounds for biocatalytic conversion to value-added products. This can lead to an increased utilisation of low rank coal. In this study, the key variables of the slurry that affect biosolubilisation of low rank coal by Trichoderma atroviride in submerged culture were investigated. Results showed that the key operating variables that influence coal biosolubilisation in the slurry bioreactor are coal loading and particle size affecting available surface area. These factors affect the surface area available for coal biosolubilisation. The optimum coal loading occurred between 5 and 10% (w/v); an increase above this optimum led to inhibition of the fungal culture of T. atroviride (ES11) by fragmentation of the fungal mycelium. A decrease in particle size fraction led to an increase in the degree of coal solubilisation. Coal biosolubilisation was shown to increase 4-fold when particle size was decreased from 600–850 μm to 150–300 μm. A 28% biosolubilisation of coal of 150–300 μm, characterised by a surface specific area of 2.17 cm2 g− 1, was measured as coal weight loss over 14 days at solids loading at 5%. This can be compared with a 7.8% coal weight loss at 600–850 μm diameters (0.54 cm2 g− 1). Soluble phenolic compounds are not a significant product of the coal biosolubilisation process. The change in pH observed in the presence of both coal and fungi was independent of coal loading and was not directly related to the extent of coal solubilisation. While soluble intermediates were observed as total organic, further metabolism resulted in complete oxidation of a significant fraction of the coal to CO2.  相似文献   

16.
《Fuel》2005,84(7-8):833-840
Pulverized coal combustion in air and the mixtures of O2/CO2 has been experimentally investigated in a 20 kW down-fired combustor (190 mm id×3 m). Detailed comparisons of gas temperature profiles, gas composition profiles, char burnouts, conversions of coal–N to NOx and coal–S to SO2 and CO emissions have been made between coal combustion in air and coal combustion in various O2/CO2 mixtures. The effectiveness of air/oxidant staging on reducing NOx emissions has also been investigated for coal combustion in air and O2/CO2 mixtures. The results show that simply replacing the N2 in the combustion air with CO2 will result in a significant decrease of combustion gas temperatures. However, coal combustion in 30% O2/70% CO2 can produce matching gas temperature profiles to those of coal combustion in air while having a lower coal–N to NOx conversion, a better char burnout and a lower CO emission. The results also confirm that air/oxidant staging is very effective in reducing NOx emissions for coal combustion in both air and a 30% O2/70% CO2 mixture. SO2 emissions are proved to be almost independent of the combustion media investigated.  相似文献   

17.
Commercial vanadia-based full-length monoliths have been exposed to aerosols formed by injection of K3PO4 (dissolved in water) in a hot flue gas (T > 850 °C) from a natural gas burner. Such aerosols may form when burning fuels with high K- and P-content, or when P-compounds are mixed with biomass as a K-getter additive. The formed aerosols have been characterized by using both a SMPS system and a low pressure cascade impactor, showing a dual-mode volume-based size distribution with a first peak at around 30 nm and a second one at diameters >1 μm. The different peaks have been associated with different species. In particular, the particles related to the 30 nm peak are associated to condensed phosphates, whereas the larger particles are associated to potassium phosphates. Two monoliths have been exposed during addition of 100 and 200 mg/Nm3 K3PO4 for 720 and 189 h, respectively. Overall, deactivation rates up to 3%/day have been measured. The spent catalysts have been characterized by bulk chemical analysis, Hg-porosimetry and SEM-EDX. NH3-chemisorption tests on the spent elements and activity tests on catalyst powders obtained by crushing the monoliths have also been carried out. The catalyst characterization has shown that poisoning by K is the main deactivation mechanism. The results show that binding K in K–P salts will not reduce the rate of catalyst deactivation.  相似文献   

18.
Pulverized coal injection (PCI) is employed in blast furnace tuyeres attempting to maximize the injection rate without increasing the amount of unburned char inside the stack of the blast furnace. When coal is injected with air through the injection lance, the resolidified char will burn in an atmosphere with a progressively lower oxygen content and higher CO2 concentration. In this study an experimental approach was followed to separate the combustion process into two distinct devolatilization and combustion steps. Initially coal was injected into a drop tube furnace (DTF) operating at 1300 °C in an atmosphere with a low oxygen concentration to ensure the combustion of volatiles and prevent the formation of soot. Then the char was refired into the DTF at the same temperature under two different atmospheres O2/N2 (typical combustion) and O2/CO2 (oxy-combustion) with the same oxygen concentration. Coal injection was also performed under a higher oxygen concentration in atmospheres typical for both combustion and oxy-combustion. The fuels tested comprised a petroleum coke and coals currently used for PCI injection ranging from high volatile to low volatile bituminous rank. Thermogravimetric analyses and microscopy techniques were used to establish the reactivity and appearance of the chars.  相似文献   

19.
To demonstrate process feasibility of in situ CO2 capture from combustion of fossil fuels using Ca-based sorbent looping technology, a flexible atmospheric dual fluidized bed combustion system has been constructed. Both reactors have an ID of 100 mm and can be operated at up to 1000 °C at atmospheric pressure. This paper presents preliminary results for a variety of operating conditions, including sorbent looping rate, flue gas stream volume, CaO/CO2 ratio and combustion mode for supplying heat to the sorbent regenerator, including oxy-fuel combustion of biomass and coal with flue gas recirculation to achieve high-concentration CO2 in the off-gas. It is the authors' belief that this study is the first demonstration of this technology using a pilot-scale dual fluidized bed system, with continuous sorbent looping for in situ CO2 capture, albeit at atmospheric pressure. A multi-cycle test was conducted and a high CO2 capture efficiency (> 90%) was achieved for the first several cycles, which decreased to a still acceptable level (> 75%) even after more than 25 cycles. The cyclic sorbent was sampled on-line and showed general agreement with the features observed using a lab-scale thermogravimetric analysis (TGA) apparatus. CO2 capture efficiency decreased with increasing number of sorbent looping cycles as expected, and sorbent attrition was found to be another significant factor to be limiting sorbent performance.  相似文献   

20.
Biomass and coal are important solid fuels for generation of hydrogen-rich syngas from steam gasification. In this work, experiments were performed in a bench-scale gasifier to investigate the effect of coal-to-biomass ratio and the reaction kinetics for gasification of chars of biomass, coal and coal–biomass blends. In the gasification of these chars, steam was used as the gasification agent, while nitrogen was used as a gas carrier. The gasification temperature was controlled at 850, 900 and 950 °C. Gas produced was analysed using a micro-GC from which carbon conversion rate was also determined. From the experiments, it is found that the coal and biomass chars have different gasification characteristics and the overall reaction rate decreases with an increase in the ratio of coal–to-biomass.The microstructure of the coal char and biomass char was examined using scanning electronic microscopy (SEM), and it was found that the biomass char is more amorphous, whereas the coal char has larger pore size. The former enhances the intrinsic reaction rate and the latter influences the intra particle mass transportation. The difference in mass transfer of the gasification agent into the char particles between the two fuels is dominant in the char gasification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号