首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultrasound-assisted oxidative desulfurization (UAOD) process was applied to diesel oil and petroleum product feedstock containing model sulfur compounds (benzothiophene, dibenzothiophene and dimethyldibenzothiophene). The influence of oxidant amount, volume of solvent for the extraction step and time and temperature of ultrasound treatment (20 kHz, 750 W, operating at 40%) was investigated. Using the optimized conditions for UAOD, sulfur removal up to 99% was achieved for model compounds in petroleum product feedstock using a molar proportion for H2O2:acetic acid:sulfur of 64:300:1, after 9 min of ultrasound treatment at 90 °C, followed by extraction with methanol (optimized solvent and oil ratio of 0.36). Using the same reagent amount and 9 min of ultrasound the removal of sulfur was higher than 75% for diesel oil samples. Sulfur removal without ultrasound using the same conditions was lower than 82% for model compounds and 55% for diesel oil samples showing that ultrasound improved the efficiency of oxidative desulfurization. In comparison to conventional hydrodesulfurization, the proposed UAOD process can be performed under relatively mild conditions (atmospheric pressure and 90 °C, without using metallic catalysts).  相似文献   

2.
Sachin Nair 《Fuel》2010,89(11):3218-6381
Dispersed silver oxides on supports such as TiO2, γ-Al2O3 and SiO2 were observed to be effective desulfurizing agents for refined fuels at ambient conditions. TiO2 was determined to be the most stable support for silver oxide. Ag (4 wt%)/TiO2 demonstrated a saturation sulfur capacity of 6.3 mgS/g for JP5 fuel containing 1172 ppmw sulfur. This high affinity for sulfur translated to one sulfur heterocycle associated with every two surface Ag atoms in the sorbent even in the presence of a 160-fold excess of other aromatics found in the fuel. A unique attribute of these sorbents was that they were thermally regenerable at 450 °C using air as a stripping medium over multiple cycles. Desulfurization characteristics also varied with fuel composition. Variation in desulfurization performance between JP5, JP8 and a light fraction JP5 were established and associated with the differences in sulfur composition of these fuels. The effects of surface area, porosity and crystal structure of the sorbent on sulfur capacity are also presented.  相似文献   

3.
Dirk D. Link  Paul Zandhuis 《Fuel》2006,85(4):451-455
The mechanism by which jet fuels are hydrotreated to reduce sulfur levels has some important implications in terms of the species and distribution of sulfur compounds remaining in the fuel. The species of sulfur that are most difficult to remove by hydrotreating, such as benzothiophenes and methyl- and dimethyl-benzothiophenes, are concentrated in the higher-boiling fraction of the fuel. Consequently, the lower-boiling fractions of the fuel contain much less sulfur. It may be possible, therefore, to obtain petroleum fractions that contain low levels of sulfur simply by distillation of the jet fuel into low-boiling and high-boiling fractions. A multi-element simulated distillation procedure according to ASTM D-2887, standard test method for boiling range distribution of petroleum fractions by gas chromatography, was coupled with atomic emission detection (GC-AED) and was used to estimate the sulfur concentration in various fractions of jet fuel, namely 20, 50, and 60%. The estimations of sulfur concentration were verified by comparing them to analyzed sulfur concentrations in several fractions of physical distillations of the jet fuels according to a modified ASTM D-86, standard test method for distillation of petroleum products at atmospheric pressure. Sulfur analyses showed that for all fuels analyzed, the initial 20% boiling fraction of the fuel contained no more than approximately 5% of the total sulfur concentration. The initial 50% boiling fraction of the fuel contained no more than 25% of the total sulfur concentration, and in most cases contained significantly less (8-16%). The total concentration of sulfur in the jet fuels tested ranged from 260 to 1380 μg/g, and there did not appear to be a direct relationship between total sulfur concentration and percentage of sulfur in each jet fuel boiling fraction.  相似文献   

4.
A film-shear reactor was used to enhance the oxidative desulfurization of thiophenes in fuels. With selected conditions, one pass of a model fuel through the film-shear reactor provided up to 55% removal of benzothiophene in only seconds at temperatures as low as 10 °C. Recirculation experiments showed that, if the flow rate and all other experimental parameters were held constant, the extent of thiophene removal increased as the residence time increased. Experiments using various concentrations of hydrogen peroxide and different fuel:oxidant ratios showed that, above a minimum amount, an increase in oxidant concentration did not lead to increased thiophene removal.  相似文献   

5.
A major challenge facing the future Hydrogen Economy is the issue of hydrogen fuel delivery and distribution. In the near term, it may be necessary to deliver high-density hydrocarbon fuels (e.g., diesel fuel) directly to the end-user (e.g., a fueling station) wherein it is reformed to hydrogen, on demand. This approach has the advantages of utilizing the existing fuel delivery infrastructure, and the fact that more energy can be delivered per trip when the tanker is filled with diesel instead of liquefied or compressed hydrogen gas. Reforming high-sulfur hydrocarbon fuels (e.g., diesel, JP-8, etc.) is particularly challenging due to rapid deactivation of conventional reforming catalysts by sulfurous compounds. A new on-demand hydrogen production technology for distributed hydrogen production is reported. In this process, first, the diesel fuel is catalytically pre-reformed to shorter chain hydrocarbons (C1-C6) before being fed to the steam reformer, where it is converted to syngas and further to high-purity hydrogen gas. In the pre-reformer, most sulfurous species present in the fuel are converted to H2S. Desulfurization of the pre-reformate gas is carried out in a special regenerative redox system, which includes an iron-based scrubber coupled with an electrolyzer. The integrated pre-reformer and sulfur-scrubbing unit operated successfully for 100 h at desulfurization efficiency of greater than 95%.  相似文献   

6.
The total development trend in the world is towards continuously lower of sulfur content as a quality standard of diesel fuels. Integrating of an oxidative desulfurization unit with a conventional hydrotreating unit can bring benefits to producing low and/or ultra-low sulfur diesel fuels. Using the hydrotreated Middle East diesel fuel as a feedstock, four processes of the oxidative desulfurization have been studied: a hydrogen peroxide–acetic acid system and a Fenton's reagent system both without/with ultrasound. Results showed that the oxidative desulfurization reaction mechanics fitted apparent first-order kinetics. The addition of Fenton's reagent could enhance the oxidative desulfurization efficiency for diesel fuels and sono-oxidation treatment in combination with Fenton's reagent shows a good synergistic effect. Under our best operating condition for the oxidative desulfurization: temperature 313 K, ultrasonic power 200 W, ultrasonic frequency 28 kHz, Fe2+/H2O2 0.05 mol/mol, pH 2.10 in aqueous phase and reaction time 15 min, the sulfur content in the diesel fuels was decreased from 568.75 μg/g to 9.50 μg/g.  相似文献   

7.
A pulsed flame photometric detector (PFPD) was calibrated using standard sulfur compounds present in gasoline and diesel fuels, in combination with a flame ionization detector (FID). Gasoline range standards were added to a hydrocarbon mixture simulating gasoline, with individual sulfur concentrations from 3 to 80 ppm. Diesel range standards were added to a low sulfur commercial diesel fuel, with sulfur concentrations from 10 to 100 ppm. In gasoline, both the chromatographic areas calculated with the linearized signal (data points elevated to a given power), and reported by the instrument were regressioned with the sulfur mass concentrations. In both cases the areas were normalized with the FID areas to reduce deviations. Results were better when using the linearized signal. Only the normalized areas calculated with the linearized signal can be used in the case of the diesel, due to significant peak coelution. Individual calibration coefficients were calculated for each standard, but overall coefficients can be used safely in each of the boiling ranges. The compliance of regulations about sulfur was verified in commercial fuels and the different sulfur compounds were inspected. The simultaneous combined FID-PFPD use allows adding the sulfur to the conventional analysis of liquid fuels (e.g. composition, simulated distillation).  相似文献   

8.
This paper describes desulfurization characteristics of low sulfur coals prior to combustion and optimum conditions of three different desulfurization processes. These processes include two thermal treatment processes (mild pyrolysis and air oxidation) and an H2O2 leaching process. Dual processes composed of thermal and leaching processes were also evaluated. Low sulfur coals employed were two imported bituminous coals and two domestic anthracite coals. The optimum reaction temperatures and times of the thermal processes were 500–550 °C and 15–20 minutes, respectively. The optimum condition for the leaching process was obtained when the experiment carried out for 60 min at 90 °C using 30% H2O2. The dual process showed the best sulfur removal efficiency as expected among the evaluated processes. This paper is dedicated to Professor Hyun-Ku Rhee on the occasion of his retirement from Seoul National University.  相似文献   

9.
I.C. Lee  H.C. Ubanyionwu 《Fuel》2008,87(3):312-318
Military jet fuel samples have been characterized by gas chromatography with a sulfur chemiluminescence detector and a mass spectrometer (GC-SCD-MS). Sixteen distinct organosulfur compounds were quantified in the jet fuel samples. The structures and the concentrations for seven of them are determined in this study. Although the total sulfur content of jet fuel varies from sample to sample, the individual organosulfur distribution remains unchanged for six jet fuel samples obtained over a 4-year period. The two major sulfur compounds are determined to be 2,3-dimethylbenzothiophene and 2,3,7-trimethylbenzothiophene. These two major compounds are determined to be good representative compounds in jet fuel surrogates for computational studies of jet fuel catalysis such as JP-8 reformation.  相似文献   

10.
Five catalysts with different hydrodesulfurization (HDS) and hydrogenation activity were tested in HDS of fresh crude heavy atmospheric gas oil (HAGO) (1.33 wt% S), two partially hydrotreated HAGO (1100 and 115 ppm S) and two model compounds, dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (DMDBT), dissolved in model solvents and HAGO. Aromatic compounds in the liquid decreased significantly the HDS rate of 4,6-DMDBT, especially for catalysts with high hydrogenation activity. H2S displayed a similar inhibition effect with all catalysts. These effects were extremely pronounced in HAGO where the DBT HDS rate decreased by a factor of 10 while 4,6-DMDBT – of 20 relative to paraffinic solvent. The feasibility of using a highly active hydrogenation catalyst for deep HDS of HAGO is diminished by the strong impact of aromatics.  相似文献   

11.
Removal of sulfur from diesel fuel by adsorption on a commercial activated carbon and 13X type zeolite was studied in a batch adsorber. Kinetic characterization of the adsorption process was performed applying Lagergren's pseudo-first order, pseudo-second order and intraparticle diffusion models using data collected during experiments carried out to determine the sulfur adsorption dependency on time. The experiments investigating adsorption efficiency regarding initial sulfur concentration were also performed and the results were fitted to Langmuir and Freundlich isotherms, respectively. Activated carbon Norit SXRO PLUS was found to have much better adsorption characteristics. The process of sulfur adsorption on the fore mentioned activated carbon was further studied by statistically analyzing data collected during experiments which were carried out according to three-factor two-level factorial design. Statistical analysis involved the calculation of effects of individual parameters and their interactions on sulfur adsorption and the development of statistical models of the process.  相似文献   

12.
Hai Mei  Teh Fu Yen 《Fuel》2003,82(4):405-414
Due to the requirement of stringent rules for ultra-low sulfur content of diesel fuels, it is necessary to develop alternative methods for desulfurization of fossil fuel derived oil. Using appropriate oxidants and catalysts with the assistance of ultrasound irradiation, model compounds such as dibenzothiophene can be quantitatively oxidized in minutes. For diesel fuels containing various levels of sulfur content, and through the use of catalytic oxidation and ultrasonication followed by solvent extraction, removal efficiency of sulfur-bearing compounds can reach or exceed 99% in a short contact time at ambient temperature and atmospheric pressure. This simple approach can be the basis for obtaining ultra-low sulfur-containing diesel oil. GC-PFPD, GC-MS, and GC-SIMDIS were used to monitor the change of organic sulfur compounds and hydrocarbons in diesels during the process.  相似文献   

13.
There is growing interest in the use of scrap tires as both a fuel and a feed material for petroleum feedstocks due to their abundance and their chemical composition. However, the sulfur content of scrap tires is a potential obstacle to scrap tires utilization as a fuel. In this paper, the partitioning of sulfur was investigated from the two major pyrolytic products from passenger car tires, liquid oils and solid chars, and the potential of producing a low sulfur char for fuel applications. The removal of sulfur during tire pyrolysis offers the greatest potential for the separation of sulfur products from the evolved gases and vapors. The influences of heating rate and pyrolysis temperature were investigated from 325 to 1000 °C, a range where substantial devolatilization occurs. The pyrolysis char and derived oil were analyzed for sulfur, and compared to the original parent sulfur content in tire derived fuel (TDF) samples. The results of sulfur determination verify that the overall desulfurization from the pyrolysis reaction is essentially unaffected by the heating rate but is affected by the ultimate pyrolysis temperature.  相似文献   

14.
Chunshan Song   《Catalysis Today》2003,86(1-4):211-263
This review discusses the problems of sulfur reduction in highway and non-road fuels and presents an overview of new approaches and emerging technologies for ultra-deep desulfurization of refinery streams for ultra-clean (ultra-low-sulfur) gasoline, diesel fuels and jet fuels. The issues of gasoline and diesel deep desulfurization are becoming more serious because the crude oils refined in the US are getting higher in sulfur contents and heavier in density, while the regulated sulfur limits are becoming lower and lower. Current gasoline desulfurization problem is dominated by the issues of sulfur removal from FCC naphtha, which contributes about 35% of gasoline pool but over 90% of sulfur in gasoline. Deep reduction of gasoline sulfur (from 330 to 30 ppm) must be made without decreasing octane number or losing gasoline yield. The problem is complicated by the high olefins contents of FCC naphtha which contributes to octane number enhancement but can be saturated under HDS conditions. Deep reduction of diesel sulfur (from 500 to <15 ppm sulfur) is dictated largely by 4,6-dimethyldibenzothiophene, which represents the least reactive sulfur compounds that have substitutions on both 4- and 6-positions. The deep HDS problem of diesel streams is exacerbated by the inhibiting effects of co-existing polyaromatics and nitrogen compounds in the feed as well as H2S in the product. The approaches to deep desulfurization include catalysts and process developments for hydrodesulfurization (HDS), and adsorbents or reagents and methods for non-HDS-type processing schemes. The needs for dearomatization of diesel and jet fuels are also discussed along with some approaches. Overall, new and more effective approaches and continuing catalysis and processing research are needed for producing affordable ultra-clean (ultra-low-sulfur and low-aromatics) transportation fuels and non-road fuels, because meeting the new government sulfur regulations in 2006–2010 (15 ppm sulfur in highway diesel fuels by 2006 and non-road diesel fuels by 2010; 30 ppm sulfur in gasoline by 2006) is only a milestone. Desulfurization research should also take into consideration of the fuel-cell fuel processing needs, which will have a more stringent requirement on desulfurization (e.g., <1 ppm sulfur) than IC engines. The society at large is stepping on the road to zero sulfur fuel, so researchers should begin with the end in mind and try to develop long-term solutions.  相似文献   

15.
在石油化工生产过程中,硫含量的测定是需要严格控制的一项重要指标,也是与发动机的腐蚀及环保排放有关的重要项目。硫的存在还降低了油品的氧化安定性,使油品颜色变深,产生特殊的气味和讨厌的沉渣而降低油品的质量。炼厂及石油化工装置排放气中的硫化氢、二氧化硫,在空气中还会形成酸雨,污染环境。破坏生态平衡,因此硫含量分析至关重要。分析硫常用的方法有很多:燃灯法、氧弹法、氧瓶燃烧法、微库仑法和荧光法等。本文就X射线荧光分析法(XRF)操作方便、速度快、效率高,减轻工人工作量等优点,对各种影响因素进行对比和研究。找到了最佳的分析条件,并选择校正曲线法建立汽油、柴油和重油中硫分析方法。结果表明:上述方法对于不同石油产品中显示出良好的选择性(重复性、再现性和灵敏度),满足了生产过程中不同石油产品中硫含量的检测需要.  相似文献   

16.
运输燃料脱硫吸附剂的研究进展   总被引:1,自引:0,他引:1  
回顾了近几年来活性炭、分子筛、金属氧化物、介孔材料等运输燃料所用的脱硫吸附剂在制备方法、脱硫效果、吸附机理等方面的研究进展以及各类吸附剂在选择性、再生等方面的优缺点。指出了以后脱硫吸附剂的研究可能集中在吸附材料、制备方法和吸附机理三方面。  相似文献   

17.
The present study explored a novel oxidative desulfurization (ODS) method of liquid hydrocarbon fuels, which combines a catalytic oxidation step of the sulfur compounds directly in the presence of molecular oxygen and an adsorption step of the oxidation-treated fuel over activated carbon. The ODS of a model jet fuel and a real jet fuel (JP-8) was conducted in a batch system at ambient conditions. It was found that the oxidation in the presence of molecular oxygen with Fe(III) salts was able to convert the thiophenic compounds in the fuel to the corresponding sulfone and/or sulfoxide compounds at 25 °C. The oxidation reactivity of the sulfur compounds decreases in the order of 2-methylbenzothiophene > 5-methylbenzothiophene > benzothiophene  dibenzothiophene. The alkyl benzothiophenes with more alkyl substituents have higher oxidation reactivity. In real JP-8 fuel, 2,3-dimethylbenzothiophene was found to be the most refractory sulfur compound to be oxidized. The catalytic oxidation of the sulfur compounds to form the corresponding sulfones and/or sulfoxides improved significantly the adsorptivity of the sulfur compounds on activated carbon, because the activated carbon has higher adsorptive affinity for the sulfones and sulfoxides than thiophenic compounds due to the higher polarity of the former. The remarkable advantages of the developed ODS method are that the ODS can be run in the presence of O2 at ambient condition without using peroxides and aqueous solvent and thus without involving the biphasic oil–aqueous-solution system.  相似文献   

18.
吸附法深度脱除燃料油中硫化物的研究进展   总被引:2,自引:1,他引:1  
综述了吸附法深度脱除燃料油中硫化物的吸附机理及技术进展,主要包括物理吸附脱硫、反应吸附脱硫和选择性吸附脱硫的研究进展。物理吸附脱硫技术对硫化物的选择性较差且很难实现深度脱硫,而反应吸附脱硫在高温下才能有较好的吸附性能,吸附剂的再生温度较高。选择性吸附脱硫技术最具发展前景,操作条件温和,投资和操作费用低,能深度脱硫,是近期最有希望实现零硫目标的脱硫技术,但吸附剂对含硫化合物的选择性和硫含量还有待进一步提高。  相似文献   

19.
杜鸿飞  段钰锋  佘敏 《化工进展》2016,35(8):2420-2425
在管式炉实验装置上进行不同温度高硫石油焦N2气氛热解实验,并利用X射线光电子能谱分析(XPS)技术进行表征,深入分析高硫石油焦热解过程中硫形态变化特性,同时采用热重-红外联用(TG-FTIR)技术深入分析热解过程。热重分析结果表明,高硫石油焦热解经历了干燥脱水阶段,长链脂肪烃、稠环芳香烃等组分分解阶段,在430℃和635℃失重速率达到最大形成失重峰。红外分析结果表明,高硫石油焦热解释放气体主要包括CO2、CH4、H2O、SO2、芳烃化合物和脂肪族化合物等,并且在不同温度区间释放气体组成有着巨大的差异。XPS分析结果表明,高硫石油焦表面硫含量及存在形态与热解温度紧密关联,随着热解温度的不断升高,高硫石油焦表面硫含量在700℃达到最大值,不同硫形态之间发生相互转化。  相似文献   

20.
柴油氧化脱硫技术新进展   总被引:1,自引:0,他引:1  
柴油低硫化及其含硫标准的日趋严格,是世界各国柴油产品质量与标准的发展趋势。加氢脱硫技术生产低硫柴油,存在投资大、操作费用高和操作条件苛刻的缺点,导致柴油成本大幅攀升,柴油氧化脱硫技术已成为研究热点。综述了国内外柴油氧化脱硫技术的研究进展,认为柴油氧化脱硫技术将成为今后生产超低硫清洁柴油的主要工艺之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号