首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemical-looping combustion (CLC) has emerged as a promising option for CO2 capture because this gas is inherently separated from the other flue gas components and thus no energy is expended for the separation. This technology would have some advantages if it could be adapted for its use with coal as fuel. In this sense, a process integrated by coal gasification and CLC could be used in power plants with low energy penalty for CO2 capture. This work presents the results obtained in the combustion of syngas as fuel with a Ni-based oxygen carrier prepared by impregnation in a CLC plant under continuous operation. The effect on the oxygen carrier behaviour and the combustion efficiency of several operating conditions was determined in the continuous CLC plant. High combustion efficiencies (~99%), close to the values limited by thermodynamics, were reached at oxygen carrier-to-fuel ratios higher than 5. The temperature in the FR had a significant influence, although high efficiencies were obtained even at 1073 K. The syngas composition had small effect on the combustion, obtaining high and similar efficiencies with syngas fuels of different composition, even in the presence of high CO concentrations. The low reactivity of the oxygen carrier with CO seemed to indicate that the water gas shift reaction acts as an intermediate step in the global reaction of the syngas in a continuous CLC plant. Neither agglomeration nor carbon deposition problems were detected during 50 h of continuous operation in the prototype. The obtained results showed that the impregnated Ni-based oxygen carrier could be used in a CLC plant for the combustion of syngas produced in an integrated gasification combined cycle (IGCC).  相似文献   

2.
A. Abad  T. Mattisson  A. Lyngfelt  M. Rydén 《Fuel》2006,85(9):1174-1185
Chemical-looping combustion (CLC) is a method for the combustion of fuel gas with inherent separation of carbon dioxide. This technique involves the use of two interconnected reactors. A solid oxygen carrier reacts with the oxygen in air in the air reactor and is then transferred to the fuel reactor, where the fuel gas is oxidized to carbon dioxide and water by the oxygen carrier. Fuel gas and air are never mixed and pure CO2 can easily be obtained from the flue gas exit. The oxygen carrier is recycled between both reactors in a regenerative process. This paper presents the results from a continuously operating laboratory CLC unit, consisting of two interconnected fluidized beds. The feasibility of the use of a manganese-based oxygen carrier supported on magnesium stabilized zirconia was tested in this work. Natural gas or syngas was used as fuel in the fuel reactor. Fuel flow and air flow was varied, the thermal power was between 100 and 300 W, and the air ratio was between 1.1 and 5.0. Tests were performed at four temperatures: 1073, 1123, 1173 and 1223 K. The prototype was successfully operated at all conditions with no signs of agglomeration or deactivation of the oxygen carrier. The same particles were used during 70 h of combustion and the mass loss was 0.038% per hour, although the main quantity was lost in the first hour of operation. In the combustion tests with natural gas, methane was detected in the exit flue gases, while CO and H2 were maintained at low concentrations. Higher temperature or lower fuel flows increases the combustion efficiency, which ranged from 0.88 to 0.99. On the other hand, the combustion of syngas was complete for all experimental conditions, with no CO or H2 present in the gas from the fuel reactor.  相似文献   

3.
Chemical-looping combustion (CLC) is a novel combustion technology with inherent separation of the greenhouse gas CO2 and low NOx (NO, NO2, N2O) emissions. In CLC, the solid oxygen carrier supplies the stoichiometric oxygen needed for CO2 and water formation, resulting in a free nitrogen mixture. The performance of oxygen carrier is the key to CLC's application. A good oxygen carrier for CLC should readily react with the fuel (fuel reactor) and should be re-oxidized upon being contacted with oxygen (air reactor). In this case, the behavior of CaSO4 as an oxygen carrier for a CLC process, reacting with gas fuels (e.g., CO, H2, and CH4) and solid fuels (e.g., coal and biomass), has been analyzed. The performance of the oxygen carrier can be improved by changing the preparation method or by making mixed oxides. Generally, Al2O3, SiO2, etc., which act a porous support providing a higher surface area for reaction, are used as the inert binder to increase the reactivity, durability, and fluidizability of the oxygen carrier particles. Further, simulation analysis of a CLC process based on CaSO4 oxygen carrier was also analyzed. Finally, some important tendencies related to CaSO4 oxygen carrier in CLC technology are put forward.  相似文献   

4.
Rahul D. Solunke 《Fuel》2011,90(2):608-617
Chemical looping combustion (CLC) is an emerging technology for clean combustion. We have previously demonstrated that the embedding of metal nanoparticles into a nanostructured ceramic matrix can result in unusually active and sinter-resistant nanocomposite oxygen carrier materials for CLC which maintain high reactivity and high-temperature stability even when sulfur contaminated fuels are used in CLC. Here, we propose a novel process scheme for in situ desulfurization of syngas with simultaneous CO2-capture in chemical looping combustion by using these robust nanocomposite oxygen carriers simultaneously as sulfur-capture materials. We found that a nanocomposite Cu-BHA carrier can indeed strongly reduce the H2S concentration in the fuel reactor effluent. However, during the process the support matrix is also sulfidized and takes part in the redox process of CLC. This results in SO2 production during the reduction of the oxygen carrier and thus limits the degree of desulfurization attainable with this kind of carrier. Nevertheless, the results suggest that simultaneous desulfurization and CO2 capture in CLC is feasible with Cu as oxygen carrier as long as appropriate carrier support materials are chosen, and could result in a novel, strongly intensified process for low-emission, high efficiency combustion of sulfur contaminated fuel streams.  相似文献   

5.
《Fuel》2007,86(7-8):1021-1035
Chemical-looping combustion (CLC) is a method for the combustion of fuel gas with inherent separation of carbon dioxide. This technique involves the use of two interconnected reactors, an air reactor and a fuel reactor. The oxygen demanded in the fuel combustion is supplied by a solid oxygen carrier, which circulates between both reactors. Fuel gas and air are never mixed and pure CO2 can be obtained from the flue gas exit. This paper presents the results from the use of an iron-based oxygen-carrier in a continuously operating laboratory CLC unit, consisting of two interconnected fluidized beds. Natural gas or syngas was used as fuel, and the thermal power was between 100 and 300 W. Tests were performed at four temperatures: 1073, 1123, 1173 and 1223 K. The prototype was successfully operated for all tests and stable conditions were maintained during the combustion. The same particles were used during 60 h of hot fluidization conditions, whereof 40 h with combustion. The combustion efficiency of syngas was high, about 99% for all experimental conditions. However, in the combustion tests with natural gas, there was unconverted methane in the exit flue gases. Higher temperature and lower fuel flows increase the combustion efficiency, which ranged between 70% and 94% at 1123 K. No signs of agglomeration or mass loss were detected, and the crushing strength of the oxygen carrier particles did not change significantly. Complementary experiments in a batch fluidized bed were made to compare the reactivity of the oxygen carrier particles before and after the 40 h of operation, but the reactivity of the particles was not affected significantly.  相似文献   

6.
Chemical-looping combustion (CLC) of syngas has a potential to generate power economically with achieving the inherent carbon dioxide capture. An oxygen carrier with high reactivity and excellent physical properties would make CLC technology more competitive. In this work, oxygen carrier with 70 wt% NiO was prepared by spray drying technique. The prepared oxygen carrier had excellent physical properties for fluidized-bed application of CLC process. The reactivity of the oxygen carrier in repeated reduction-oxidation was measured by thermogravimetric analyzer with simulated syngas. Oxygen carrier calcined at 1,100 °C showed high oxygen transfer capacity of 14.7 wt%, utilizing 98% of the transferable oxygen. Oxygen transfer capacity and oxygen transfer rate was increased with the increase of reaction temperature, and the highest oxygen transfer rate was observed when about half of the transferable oxygen reacted with syngas. The reduction rate of the syngas (mixture of H2 and CO) appeared to be approximately the sum of the reaction rate of each fuel gas. The experimental results indicated that the spray-dried NiO oxygen carrier prepared in this work could be a good quality oxygen carrier for the CLC of syngas.  相似文献   

7.
Existing energy generation technologies emit CO2 gas and are posing a serious problem of global warming and climate change. The thermodynamic feasibility of a new process scheme combining chemical looping combustion (CLC) and combined reforming (CR) of propane (LPG) is studied in this paper. The study of CLC of propane with CaSO4 as oxygen carrier shows thermodynamic feasibility in temperature range (400-782.95 °C) at 1 bar pressure. The CO2 generated in the CLC can be used for combined reforming of propane in an autothermal way within the temperature range (400-1000 °C) at 1 bar pressure to generate syngas of ratio 3.0 (above 600 °C) which is extremely desirable for petrochemical manufacture. The process scheme generates (a) huge thermal energy in CLC that can be used for various processes, (b) pure N2 and syngas rich streams can be used for petrochemical manufacture and (c) takes care of the expensive CO2 separation from flue gas stream and CO2 sequestration. The thermoneutral temperature (TNP) of 702.12 °C yielding maximum syngas of 5.98 mol per mole propane fed, of syngas ratio 1.73 with negligible methane and carbon formation was identified as the best condition for the CR reactor operation. The process can be used for different fuels and oxygen carriers.  相似文献   

8.
Paul Cho  Tobias Mattisson 《Fuel》2004,83(9):1215-1225
For combustion with CO2 capture, chemical-looping combustion (CLC) with inherent separation of CO2 is a promising technology. Two interconnected fluidized beds are used as reactors. In the fuel reactor, a gaseous fuel is oxidized by an oxygen carrier, e.g. metal oxide particles, producing carbon dioxide and water. The reduced oxygen carrier is then transported to the air reactor, where it is oxidized with air back to its original form before it is returned to the fuel reactor. The feasibility of using oxygen carrier based on oxides of iron, nickel, copper and manganese was investigated. Oxygen carrier particles were produced by freeze granulation. They were sintered at 1300 °C for 4 h and sieved to a size range of 125-180 μm. The reactivity of the oxygen carriers was evaluated in a laboratory fluidized bed reactor, simulating a CLC system by exposing the sample to alternating reducing and oxidizing conditions at 950 °C for all carriers except copper, which was tested at 850 °C. Oxygen carriers based on nickel, copper and iron showed high reactivity, enough to be feasible for a suggested CLC system. However, copper oxide particles agglomerated and may not be suitable as an oxygen carrier. Samples of the iron oxide with aluminium oxide showed signs of agglomeration. Nickel oxide showed the highest reduction rate, but displayed limited strength. The reactivity indicates a needed bed mass in the fuel reactor of about 80-330 kg/MWth and a needed recirculation flow of oxygen carrier of 4-8 kg/s, MWth.  相似文献   

9.
Chemical-looping combustion (CLC) is a novel technology that can be used to meet demands on energy production without CO2 emissions. The CLC-process includes two reactors, an air and a fuel reactor. Between these two reactors oxygen is transported by an oxygen carrier, which most often is a metal oxide. This arrangement prevents mixing of N2 from the air with CO2 from the combustion. The combustion gases consist almost entirely of CO2 and H2O. Therefore, the technique reduces the energy penalty that normally arises from the separation of CO2 from other flue gases, hence, CLC may make capture of CO2 cheaper.Iron ore and oxide scale from steel production were tested as oxygen carriers in CLC batch experiments with solid fuels. Petroleum coke, charcoal, lignite and two bituminous coals were used as fuels.The experiments were carried out in a laboratory fluidized-bed reactor that was operating cyclically with alternating oxidation and reduction phases. The exhaust gases were led to an analyzer where the contents of CO2, CO, CH4 and O2 were measured. Gas samples collected in bags were used to analyze the content of hydrogen in a gas chromatograph.The results showed that both the iron ore and the oxide scale worked well as oxygen carrier and both oxygen carriers increased their reactivity with time.  相似文献   

10.
Chemical looping combustion (CLC) uses an oxygen carrier circulating between an air and a fuel reactor to replace direct burning of fuels in air. The very low energy penalty for CO2 separation in CLC gives it the potential to become an important technology on the way to a CO2 neutral energy supply. In this work, the influence of the particle size of coal on the rate of reaction of the coal was investigated in a bed of oxygen carrier. In order to do this, a method to quench the reaction of coal with oxygen carriers at a specified time and measure the particle size distribution of the remaining coal was developed. Three size fractions of coal were used in the experiments: 90–125, 180–212 and 250–355 μm. Particle size distributions of the fuel show a decrease in particle size with time. The influence of devolatilisation of the coal on the coal particle size was measured, showing that coal particles do not break in the fluidized bed reactor used for the experiments. Reaction rates based on measurements of gas phase concentrations of CO2, CO and CH4 showed that the reaction rate is independent of the particle size. These results are in line with literature findings, as studies have shown that carbon gasification is size-independent at conditions similar to those in the performed CLC experiments.  相似文献   

11.
Chemical looping combustion (CLC) is a clean energy technology for CO2 capture that uses periodic oxidation and reduction of an oxygen carrier with air and a fuel, respectively, to achieve flameless combustion and yield sequestration-ready CO2 streams. While CLC allows for highly efficient CO2 capture, it does not, however, provide a solution for CO2 sequestration.Here, we propose chemical looping dry reforming (CLDR) as an alternative to CLC by replacing air with CO2 as the oxidant. CLDR extends the chemical looping principle to achieve CO2 reduction to CO, which opens a pathway to CO2 utilization as an alternative to sequestration. The feasibility of CLDR is studied through thermodynamic screening calculations for oxygen carrier selection, synthesis and kinetic experiments of nanostructured carriers using cyclic thermogravimetric analysis (TGA) and fixed-bed reactor studies, and a brief model-based analysis of the thermal aspects of a fixed-bed CLDR process.Overall, our results indicate that it is indeed possible to reduce CO2 to CO with high reaction rates through the use of appropriately designed nanostructured carriers, and to integrate this reaction into a cyclic redox (“looping”) process.  相似文献   

12.
For gaseous fuel combustion with inherent CO2 capture and low NOx emission, chemical-looping combustion (CLC) may yield great advantages for the savings of energy to CO2 separation and suppressing the effect on the environment. In a chemical-looping combustor, fuel is oxidized by metal oxide medium (oxygen carrier particle) in a reduction reactor. Reduced particles are transported to the oxidation reactor and oxidized by air and recycled to the reduction reactor. The fuel and the air are never mixed, and the gases from the reduction reactor, CO2 and H2O, leave the system as separate streams. The H2O can be easily separated by condensation and pure CO2 is obtained without any loss of energy for separation. In this study, NiO based particles are examined from the viewpoints of reaction kinetics, carbon deposition, and cyclic use (regenerative ability). The purpose of this study is to find appropriate reaction conditions to avoid carbon deposition and achieve high reaction rate (e.g., temperature and maximum carbon deposition-free conversion) and to certify regenerative ability of NiO/bentonite particles. In this study, 5.04% methane was used as fuel and air was used as oxidation gas. The carbon deposition characteristics, reduction kinetics and regenerative ability of oxygen carrier particles were examined by TGA (Thermal Gravimetrical Analyzer).  相似文献   

13.
The chemical-looping combustion (CLC) and chemical-looping with oxygen uncoupling (CLOU) processes are novel solutions for efficient combustion with direct separation of carbon dioxide. These processes use a metal oxide as an oxygen carrier to transfer oxygen from an air to a fuel reactor, where the fuel reacts with the solid oxygen carrier. When utilizing coal in CLC, the oxygen carrier particles could be affected through interaction with the ash-forming mineral matter found in coal, causing deactivation and/or agglomeration. In this work, possible interactions between minerals commonly encountered in coal and several promising oxygen carriers that are currently under investigation for their use in CLC are studied by both experiment and thermodynamic equilibrium calculations. Possible interaction was studied for both highly reducing and oxidizing conditions at 900 °C. Under highly reducing conditions pyrite was found to have by far the most deteriorating effect on the oxygen carrier particles, as the sulfur in the pyrite reacted with the oxygen carrier to form sulfides. Quartz and clay minerals were found to have a rather low influence on the oxygen carriers. Out of the oxygen carriers investigated, CuO/MgAl2O4 and the Mn3O4/ZrO2 oxygen carriers tended to be quite reactive towards mineral matter whereas ilmenite has been shown to be the most robust oxygen carrier. Although sulfur can clearly deactivate Ni, Cu and Mn based oxygen carriers under sub-stoichiometric conditions, when the fuel is converted fully to CO2 and H2O, sulfides are only expected for Ni-based oxygen carriers.  相似文献   

14.
Chemical-looping combustion (CLC) is a combustion technique where the CO2 produced is inherently separated from the rest of the flue gases with a considerably low energy penalty. For this reason, CLC has emerged as one of the more attractive options to capture CO2 from fossil fuel combustion. When applying CLC with solid fuels, the use of a low cost oxygen carrier is highly important, and one such low cost oxygen carrier is the mineral ilmenite. The current work investigates the reactivity of several ilmenites, some which are synthetically produced by freeze granulation and two natural minerals, one Norwegian ilmenite and one South African ilmenite.  相似文献   

15.
A chemical looping combustion (CLC) combined cycle with coke oven gas as fuel and NiO/NiAl2O4 as an oxygen carrier is proposed. The system was simulated by Aspen Plus® and the oxygen carrier circulation ratio was calculated. The effects of key operational temperatures and different gas turbines on the system performance were investigated. Under optimized conditions, a high CO2 capture efficiency could be achieved. To capture CO2 thoroughly, the PG6561B gas turbine can be employed, allowing for nearly 100 % CO2 capture efficiency.  相似文献   

16.
Chemical-looping combustion (CLC) is a promising technology for the combustion of gas or solid fuel with efficient use of energy and inherent separation of CO2. A reactivity study of CaSO4 oxygen carrier in CLC of methane was conducted in a laboratory scale fixed bed reactor. The oxygen carrier particles were exposed in six cycles of alternating reduction methane and oxidation air. A majority of CH4 reacted with CaSO4 to form CO2 and H2O. The oxidation was incomplete, possibly due to the CaSO4 product layer. The reactivity of CaSO4 oxygen carrier increased for the initial cycles but slightly decreased after four cycles. The product gas yields of CO2, CH4, and CO with cycles were analyzed. Carbon deposition during the reduction period was confirmed with the combustible gas (CO+H2) in the product gas and slight CO2 formed during the early stage of oxidation. The mechanism of carbon deposition and effect was also discussed. SO2 release behavior during reduction and oxidation was investigated, and the possible formation mechanism and mitigation method was discussed. The oxygen carrier conversion after the reduction decreased gradually in the cyclic test while it could not restore its oxygen capacity after the oxidation. The mass-based reaction rates during the reduction and oxidation also demonstrated the variation of reactivity of CaSO4 oxygen carrier. XRD analysis illustrated the phase change of CaSO4 oxygen carrier. CaS was the main reduction product, while a slight amount of CaO also formed in the cyclic test. ESEM analysis demonstrated the surface change of particles during the cyclic test. The reacted particles tested in the fixed bed reactor were not uniform in porosity. EDS analysis demonstrated the transfer of oxygen from CaSO4 to fuel gas while leaving CaS as the dominant reduced product. The results show that CaSO4 oxygen carrier may be an interesting candidate for oxygen carrier in CLC. This work was presented at the 7 th China-Korea Workshop on Clean Energy Technology held at Taiyuan, China, June 26–28, 2008.  相似文献   

17.
There are growing concerns about increasing emissions of greenhouse gases and a looming global warming crisis. CO2 is a greenhouse gas that affects the climate of the earth. Fossil fuel consumption is the major source of anthropogenic CO2 emissions. Chemical looping combustion (CLC) has been suggested as an energy‐efficient method for the capture of carbon dioxide from combustion. A chemical‐looping combustion system consists of a fuel reactor and an air reactor. The air reactor consists of a conventional circulating fluidized bed and the fuel reactor is a bubbling fluidized bed. The basic principle involves avoiding direct contact of air and fuel during the combustion. The oxygen is transferred by the oxygen carrier from the air to the fuel. The water in combustion products can be easily removed by condensation and pure carbon dioxide is obtained without any loss of energy for separation. With the improvement of numerical methods and more advanced hardware technology, the time required to run CFD (computational fluid dynamic) codes is decreasing. Hence, multiphase CFD‐based models for dealing with complex gas‐solid hydrodynamics and chemical reactions are becoming more accessible. To date, there are no reports in the literature concerning mathematical modeling of chemical‐looping combustion using FLUENT. In this work, the reaction kinetics models of the (CaSO4 + H2) fuel reactor is developed by means of the commercial code FLUENT. The effects of particle diameter, gas flow rate and bed temperature on chemical looping combustion performance are also studied. The results show that the high bed temperature, low gas flow rate and small particle size could enhance the CLC performance.  相似文献   

18.
Process intensification options are explored for near-carbon-neutral, natural-gas-fueled combined cycle (CC) power plants, wherein the conventional combustor is replaced by a series of chemical-looping combustion (CLC) reactors. Dynamic modeling and optimization are deployed to design CLC-CC power plants with optimal configuration and performance. The overall plant efficiency is improved by optimizing the CLC reactor design and operation, and modifying the CC plant configuration and design. The optimal CLC-CC power plant has a time-averaged efficiency of 52.52% and CO2 capture efficiency of 96%. The main factor that limits CLC-CC power plant efficiency is the reactor temperature, which is constrained by the oxygen carrier material. CLC exhaust gas temperature during heat removal and gas compressor to gas turbine pressure ratio are the most important operating variables and if properly tuned, CLC-CC power plants can reach high thermodynamic efficiencies. © 2018 American Institute of Chemical Engineers AIChE J, 65: e16516 2019  相似文献   

19.
Chemical looping combustion (CLC) is a flameless two-step fuel combustion that produces a pure CO2 stream, ready for compression and sequestration. The process is composed of two interconnected fluidized bed reactors. The air reactor which is a conventional circulating fluidized bed and the fuel reactor which is a bubbling fluidized bed. The basic principle is to avoid the direct contact of air and fuel during the combustion by introducing a highly-reactive metal particle, referred to as oxygen carrier, to transport oxygen from the air to the fuel. In the process, the products from combustion are kept separated from the rest of the flue gases namely nitrogen and excess oxygen. This process eliminates the energy intensive step to separate the CO2 from nitrogen-rich flue gas that reduce the thermal efficiency.Fundamental knowledge of multiphase reactive fluid dynamic behavior of the gas-solid flow is essential for the optimization and operation of a chemical looping combustor.Our recent thorough literature review shows that multiphase CFD-based models have not been adapted to chemical looping combustion processes in the open literature. In this study, we have developed the reaction kinetics model of the fuel reactor and implemented the kinetic model into a multiphase hydrodynamic model, MFIX, developed earlier at the National Energy Technology Laboratory. Simulated fuel reactor flows revealed high weight fraction of unburned methane fuel in the flue gas along with CO2 and H2O. This behavior implies high fuel loss at the exit of the reactor and indicates the necessity to increase the residence time, say by decreasing the fuel flow rate, or to recirculate the unburned methane after condensing and removing CO2.  相似文献   

20.
《Fuel》2004,83(13):1749-1757
In a chemical-looping combustion (CLC) process, gas (natural gas, syngas, etc.) is burnt in two reactors. In the first one, a metallic oxide that is used as oxygen source is reduced by the feeding gas to a lower oxidation state, being CO2 and steam the reaction products. In the second reactor, the reduced solid is regenerated with air to the fresh oxide, and the process can be repeated for many successive cycles. CO2 can be easily recovered from the outlet gas coming from the first reactor by simple steam condensation. Consequently, CLC is a clean process for the combustion of carbon containing fuels preventing the CO2 emissions to the atmosphere. The main drawback of the overall process is that the carriers are subjected to strong chemical and thermal stresses in every cycle and the performance and mechanical strength can decay down to unacceptable levels after enough number of cycles in use.In this paper the behaviour of CuO as an oxygen carrier for a CLC process has been analysed in a thermogravimetric analyser. The effects of carrier composition and preparation method used have been investigated to develop Cu-based carriers exhibiting high reduction and oxidation rates without substantial changes in the chemical, structural and mechanical properties for a high number of oxidation-reduction cycles. It has been observed that the carriers prepared by mechanical mixing or by coprecipitation showed an excellent chemical stability in multicycle tests in thermobalance, however, the mechanical properties of these carriers were highly degraded to unacceptable levels. On the other hand, the carriers prepared by impregnation exhibited excellent chemical stability without substantial decay of the mechanical strength in multicycle testing. These results suggest that copper based carriers prepared by impregnation are good candidates for CLC process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号