首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 312 毫秒
1.
由于分段温差电元件能够在较宽的温度范围内很大程度地提高热电转换效率,因此,在世界范围内受到广泛的关注。对碲化铅(PbTe)材料和碲化铋(Bi2Te3)材料组成的分段温差电元件进行了理论设计和计算。确定了在热面温度为773K、冷面温度为323K,元件总长度为15mm时,PbTe的最佳长度为8.8mm。测试结果表明:由设计的元件制作出的分段温差电单偶的热电转换效率达到了7.31%。  相似文献   

2.
一种温差电单偶热电转换效率的测试方法   总被引:1,自引:0,他引:1  
提出了一种温差电单偶热电转换效率的测试方法,将测定输入温差电单偶的热流量分解为测定温差电单偶的输出电功率与测定从温差电单偶流出的热流量,并用温差电热流量计测定温差电单偶冷面流出的热流量。该测试方法避免了测量输入温差电元件的热流量,因此可以不考虑温差电元件侧面对流、辐射热损失防护问题。半导体温差电材料的塞贝克系数可以是金属的几倍,因此温差电热流量计的灵敏度高,热电转换效率的测量可以获得较高精度。给出了一些温差电单偶热电转换效率的测试结果。热面温度500℃,冷面温度50℃时,碲化铅/碲化铋级联温差电单偶的最大热电转换效率测试结果为8.45%。当冷面温度固定在50℃,作者测试了一对碲化铋温差电单偶热电转换效率随热面温度变化的规律,结果显示其热电转换效率呈近似线性增长。讨论了测试误差的来源,认为测试误差主要来源于热流量计的标定误差。  相似文献   

3.
利用商用有限元软件ANSYS建立了带接触层的分段温差电单偶模型,不仅能考虑接触电阻,还能考虑接触热阻。该模型由n-Bi2Te3/n-PbTe,p-BiSbTe/p-Zn4Sb3组成。在电偶臂总长l=5mm时,优化温差电元件得到最大热电转换效率,并分析接触电阻和接触热阻对热电转换效率的影响,以及电臂的分界面温度。结果表明,在热端温度673K,冷端温度分别为298、323、353K时,最大转换效率为11.64%,10.70%,9.50%。当接触层厚0.1mm,接触电阻率为5×10-5Ω·m(即每电臂接触电阻为150μΩ·cm2),接触热导率为kc=6W/mK时,最大转换效率降到10.15%,9.33%,8.31%。分界面温度在材料Z-T曲线交点温度附近,大约为3%~-1%范围内。  相似文献   

4.
为提高温差电材料热电性能和机械强度,满足空间用温差电致冷组件研制要求,探索热压法制备BiTe基温差电材料,分别采用普通热压、纳米复合粉热压和热压塑形三种方法对BiTe基温差电材料进行处理,将三种样品进行性能表征并与常规区熔材料比对,结果表明热压工艺制备的BiTe基温差电材料致密性好,抗弯强度与热电性能均大于区熔材料。  相似文献   

5.
一种温差电器件的发电性能分析研究   总被引:1,自引:0,他引:1  
钱剑锋  杨灿军 《电源技术》2005,29(7):459-461
BiTe合金是低温热电发电材料的一种典型材料。为获得其在室温范围内的发电方面的热电性能,采用一种BiTe合金材料,制备了多种规格的温差电器件,通过实验研究了该器件在不同温度下的电阻、电压、赛贝克系数等热电性能,给出了其随温度变化的线性近似方程,求得相关的经验参数。在此基础上,推导出最大输出功率的近似数学表达式,并进行了试验验证,实验结果表明近似方程与实际测量结果相吻合。  相似文献   

6.
以(GeTe)0.91(PbTe)0.09固溶体合金为研究对象,通过掺杂Sb元素来降低载流子浓度,探索Sb元素含量对(GeTe)0.91(PbTe)0.09材料热电性能的影响机制,提升材料热电性能。通过熔炼、真空热压、退火结合工艺制备了一系列(GeTe)0.91-x(PbTe)0.0 9(SbTe)x材料样品,对其热电性能进行表征和研究。结果表明:掺杂Sb元素后,成分为(GeTe)0.85-(PbTe)0.09(SbTe)0.06材料热电性能最好,其ZT值在773 K条件下可达到1.65。将(GeTe)0.91(PbTe)0.09材料和(GeTe)0.85-(PbTe)0.09(SbTe)0.06材料制成温差电单偶,测试单偶的热电转换效率,(GeTe)...  相似文献   

7.
采用~(241)Am-Be中子源等效热功率为12 W的Pu-238热源产生的中子射线,对Bi_2Te_3器件和PbTe两种温差电材料进行模拟加速辐照2年、3年、6年的辐照实验,对Bi_2Te_3和PbTe两种材料在实验前和实验后的热电性能进行对比测试,实验分析表明,同位素温差电池(RTG)中能量较高的快中子对温差电材料的热电性能不会造成明显影响。  相似文献   

8.
汽车中冷器在冷却增压器的高温气体时会释放大量的热,这些热量往往没有经过回收利用就被释放掉了,不仅有碍汽车散热而且浪费了能源。汽车中冷器温差发电器是通过热电效应中冷器的气体余热转换为电能的电源装置,同时也降低了中冷器气体温度,使发动机的进气量更充分,燃烧更彻底,从而达到汽车节能高效的目的。利用有限元方法对中冷器进行热分析,获得温度分布图谱;在此基础上,基于现有温差发电材料设计了利用汽车中冷器余热发电的温差发电器,它由若干对温差电单偶串联组成;并通过多物理场耦合仿真分析了温差电单偶的输出性能,结果表明温差发电器在中冷器表面温度范围内具有较高的输出功率和热电转换效率。  相似文献   

9.
贾阳  任德鹏 《电源技术》2008,32(4):252-256
考虑温差材料的塞贝克效应及电流的珀耳帖效应,与传热方程相结合,建立了温差发电器的一维计算模型,数值模拟了温差发电器的热电耦合工作过程。主要分析了温差材料的导热系数、电阻率和塞贝克系数的变化及其变物性计算对温差发电器工作性能的影响。计算表明,材料的导热系数、电阻率及塞贝克系数对发电器转换效率的影响规律均为非线性的,其中导热系数的影响作用最明显;当发电器的温差电元件物性参数差别较大时,其内部有不同的温度分布,采用平均值计算会有明显的误差;温差材料物性参数随温度变化后,发电器工作性能有较大的变化。  相似文献   

10.
区熔法是被广泛采用的制备BiTe基温差电材料的方法。针对批量生产中的区熔温度和温度梯度进行了一系列的实验研究,并对所获得的材料样品的电导率、塞贝克系数及功率因子进行了测试与分析,以了解材料的温差电性能;采用扫描电子显微镜(SEM)观察材料的微观结构;分段密度测试,以分析材料的均匀性。实验结果表明,在确定区熔速率和熔区宽度的前提下,适当的升高区熔温度并使材料生长过程中存在一定的温度梯度有益于提高材料的温差电性能。通过本实验得到在熔区宽度15mm、区熔走速30mm/h时的最佳区熔温度为800,850℃。  相似文献   

11.
介绍了热电发电和热电制冷的工作原理及效率,对近两年来n型热电材料研究现状进行了概述,论及了提高热电性能的途径,指出随着能源环境危机的加剧,作为绿色环保的热电材料必将得到优先研发并将展示出更大的应用前景。。  相似文献   

12.
温差发电技术的研究进展及现状   总被引:4,自引:0,他引:4  
温差发电技术是一种绿色环保的发电方式,它可以合理利用太阳能、地热能、海洋热能、工业余热废热等低品位能源转化成电能。介绍了温差发电技术的原理,回顾了国内外的研究进展及现状,对温差发电中存在的发电效率低、温差电组件使用寿命短、可靠性不高等问题进行了分析,并提出了解决的办法。同时指出随着热电材料和温差电组件性能的提高,温差发电技术的优势将更加明显,应用前景广阔。  相似文献   

13.
温差电材料性能决定了温差发电组件(TEM)的发电功率及转换效率,而在使用过程中由于环境因素的影响,对其机械性能也提出了一定的要求.热压法制备的Bi2Te3基温差电材料密度和强度均有提高,缓解了区熔法制备的Bi2Te3基温差电材料在平行于晶体方向上易发生解理破坏的问题,但还不能完全避免.通过分析Bi2Te3基温差电材料沿...  相似文献   

14.
介绍了一种测量热电薄膜平面内Seebeck系数和电导率一体化的测量装置。本装置可用于测量室温到300℃温度范围内薄膜材料平面内Seebeck系数和电导率,测量过程简单,测量成本低,且不会对薄膜造成损伤。实验证明,在薄膜两端沉积一层导电性好的铜膜后,该测量装置完全可以忽略接触电阻的影响,使得测量稳定性好,精度高,可满足纳米薄膜热电材料的Seebeck系数和电导率的一体化测量的要求。  相似文献   

15.
研究了一种利用半导体制冷技术的电池热管理系统。首先分析了电池的生热特性及传播规律,指出电池需要工作在合理的工作范围内,然后建立电池的热效应模型和半导体制冷模型,并对单体电池温度场进行了仿真和实验,实验验证了模型的正确性。根据实验结果对模型进行了校正,使模型更符合实际情况。最后对电池组半导体制冷热管理系统进行了仿真,结果表明半导体制冷片对单体温度场和电池组温度场都能够进行有效的调节,使电池工作在合适的温度范围内。  相似文献   

16.
数值模拟了某型同位素温差电源的热电耦合工作过程,探讨了在温差材料常物性假设条件下环境温度、热源加热功率、表面发射率、肋片高度、肋片数等参数对温差电源工作特性的影响。结果表明,加热功率对电源内部的温度影响最明显,而环境温度、表面发射率及肋片参数对电源表面的温度影响显著;环境温度及表面发射率对温差电源电性能的影响作用较小;散热肋片安装后电源整体温度明显降低,输出电性能得到改善;较大的加热功率有利于提高温差电源的转换效率。  相似文献   

17.
ABSTRACT

Superlattice thermoelectric materials are important for power-generation devices that are designed to convert waste heat into electrical energy. Thermoelectric technology has only occupied niche areas, such as the radioisotope thermoelectric generators for NASA'S spacecrafts, where the energy-conversion efficiency are outweighed by the application requirements. Superlattice thermoelectric materials advances and an increasing awareness of energy and environmental conservation issues have rekindled prospects for automotive and other applications of thermoelectric materials. This article reviews thermoelectric energy-conversion technology for radioisotope space power systems and several proposed applications of thermoelectric waste-heat recovery devices in the automotive industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号