首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hippocampal formation has been extensively studied for its special role in visual spatial learning and navigation. To ascertain the nature of the associations made, or computations performed, by hippocampus, it is important to delineate the functional contributions of its afferents. Therefore, single units were recorded in the lateral dorsal nucleus of the thalamus (LDN) as rats performed multiple trials on a radial maze. Many LDN neurons selectively discharged when an animal's head was aligned along particular directions in space, irrespective of its location in the test room. These direction-sensitive cells were localized to the dorsal aspect of the caudal two-thirds of the LDN, the site of innervation by retinal recipient pretectal and intermediate/deep-layer superior colliculus cells (Thompson and Robertson, 1987b). The directional specificity and preference of LDN cells were disrupted if rats were placed on the maze in darkness. If the room light was then turned on, the original preference was restored. If the light was again turned off, directional firing was maintained briefly. Normal directional firing lasted about 2-3 min. After this time, the directional preference (but not specificity) appeared to "rotate" systematically in either the clockwise or counterclockwise direction. The duration of normal directional discharge patterns in darkness could be extended to 30 min by varying the behavior of the animal. LDN cells required visual input to initialize reliable directional firing. After the rat viewed the environment, directional specificity was maintained in the absence of visual cues. Maximal directional firing was achieved only when the rat viewed the entire test room, and not just the scene associated with the directional preference of the cell. Thus, contextual information seems important. Also, a significant correlation was found between directional specificity and errors made on the maze during acquisition of the task. It was concluded that the LDN may pass on to the hippocampal formation directional information that is not merely a reflection of current sensory input. As such, the LDN may serve an important integrative function for limbic spatial learning systems.  相似文献   

2.
Studies of the spatial memory capacities of aged animals usually focus on performance during the learning of new environments. By contrast, efforts to characterize age-related alterations in spatial firing information processing by hippocampal neurons typically use an environment that is highly familiar to the animals. In the present study we compared the firing properties of hippocampal neurons in young adult and aged rats as they acquired spatial information about new environmental cues. Hippocampal complex spike cells were recorded while rats performed a radial arm maze task in a familiar environment and then recorded again after many of the spatial cues were changed. After the change in the environment, in aged rats 35-42% of place fields retained their original shape and location with respect to the maze center, although they usually rotated to another arm. By contrast, all place fields in young animals either disappeared or appeared in a new location. Some of the new place fields appeared in the new environment during the first 5 min of exploration, whereas others needed more than 30 min to develop fully. In the familiar environment spatial selectivity of place cells was similar in young and aged rats. By contrast, when rats were placed into a new environment, spatial selectivity decreased considerably in aged memory-impaired rats compared with that of young rats and aged rats with intact memory performance.  相似文献   

3.
Hippocampal place fields were recorded as rats explored a four-arm radial maze surrounded by curtains holding distal stimuli and with distinct local tactile, olfactory, and visual cues covering each arm. Systematic manipulations of the individual cues and their interrelationships showed that different hippocampal neurons encoded individual local and distal cues, relationships among cues within a stimulus set, and the relationship between the local and distal cues. Double rotation trials, which maintained stimulus relationships within distal and local cue sets, but altered the relationship between them, often changed the responses of the sampled neural population and produced new representations. After repeated double rotation trials, the incidence of new representations increased, and the likelihood of a simple rotation with one of the cue sets diminished. Cue scrambling trials, which altered the topological relationship within the local or distal stimulus set, showed that the cells that followed one set of controlled stimuli responded as often to a single cue as to the constellation. These cells followed the single cue when the stimulus constellation was scrambled, but often continued firing in the same place when the stimulus was removed or switched to respond to other cues. When the maze was surrounded by a new stimulus configuration, all of the cells either developed new place fields or stopped firing, showing that the controlled stimuli had persistent and profound influence over hippocampal neurons. Together, the results show that hippocampal neurons encode a hierarchical representation of environmental information.  相似文献   

4.
Neuronal activity of the superior colliculus isolated from the corticofugal influences was studied in various periods of time (from 3 to 20 months) after unilateral dissection of cortico-subcortical projections. In 16 unanesthetized immobilized cats, after the surgery, spontaneous activity of collicular neurons became more regular and with less complex bursts during the postoperative period. Evoked activity was completely suppressed during early hours of the postoperative period. Only 31.5% of collicular cells were sensitive to light 3 months after the operation. Evoked responses to light of 90.4% cells reappeared in the isolated colliculus not earlier than 10-12 months after the isolation, while directional and movement sensitivity practically did not restore even within 20 months after the surgery. Corticocollicular influences are considered to be a necessary condition for effective visual information processing in the colliculi superiores.  相似文献   

5.
Spatial and locomotion-related behavioral correlates of hippocampal cell discharge were compared between ischemic and sham-control rats performing a spatial maze. Ischemic rats showed impaired choice accuracy during maze acquisition, but not during asymptote performance. Single-unit correlates during asymptote performance revealed enhanced spatial selectivity of CA2/3 complex-spike cells coincident with attenuated place-specific firing by hilar complex-spike or subicular cells. Responsivity to locomotion state by stratum granulosum interneurons was exaggerated, and locomotion-induced changes in firing of hilar and subicular interneurons were reduced. Ischemic rats showed recovered spatial learning abilities as evidenced by the fact that acquisition of the spatial task in a second environment was not impaired. Because representational reorganization was also observed in ischemic, maze-naive rats, brain injury per se appears to change information coding schemes. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

6.
Evaluated the influence of physical properties of sensory stimuli (visual intensity, direction, and velocity; auditory intensity and location) on sensory activity and multisensory integration of superior colliculus (SC) neurons in awake, behaving primates. Two male monkeys were trained to fixate a central visual fixation point while visual and/or auditory stimuli were presented in the periphery. Visual stimuli were always presented within the contralateral receptive field of the neuron whereas auditory stimuli were presented at either ipsi- or contralateral locations. 66 of the 84 SC neurons responsive to these sensory stimuli had stronger responses when the visual and auditory stimuli were combined at contralateral locations than when the auditory stimulus was located on the ipsilateral side. This trend was significant across the population of auditory-responsive neurons. In addition, 31 SC neurons were presented a battery of tests in which the quality of one stimulus of a pair was systematically manipulated. Eight of these neurons showed preferential responses to stimuli with specific physical properties, and these preferences were not significantly altered when multisensory stimulus combinations were presented. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

7.
To determine if functional alterations in the superior colliculus might account for recovery of visual behaviors following visual cortex removal in infant cats, the receptive field characteristics of single units in the superior colliculus of cats whose visual cortex was removed within the first week of life were compared with those of cats which sustained visual cortex lesions in adulthood and with those of normal cats. In the normal superior colliculus, 90% of all cells responded to moving stimuli irrespective of shape or orientation. Sixty-four percent of these units were directionally selective, responding well to movement in one direction but poorly or not at all to movement in the opposite direction. Ninety percent of units were binocular, the vast majority of these responding equally to stimulation of either eye or showing only slight preference for stimulation of the contralateral eye. Responses to stationary flashes of light were observed in only 33% of all visually activated cells in the normal superior colliculus. After visual cortex ablation in adult cats, only six percent of movement sensitive cells were directionally selective. Binocular preference was shifted following adult visual cortex lesions such that sixty percent of all cells responded exclusively or predominantly to stimulation of the contralateral eye. Seventy-one percent of all visually responsive units responded to stationary lights flashed on or off within their receptive field boundaries. Lesions limited primarily to area 17 had the same effect as larger lesions of visual cortex. Infant visual cortex lesions resulted in receptive field alterations similar to those observed after adult ablation. Only fifteen percent of motion sensitive units were directionally selective. Seventy-one percent responded exclusively or predominantly to stimulation of the contralateral eye. Seventy-six percent of visually responsive cells were activated by stationary light. Lesions largely confined to area 17 produced the same alterations as more extensive lesions of visual cortex. Thus, no evidence was found that the superior colliculus is involved in the functional reorganization presumed to occur following visual cortex ablation in infant cats. Recovery of visual behaviors following neonatal injury may therefore not involve alterations in the receptive fields of single cells.  相似文献   

8.
1. Monocular enucleation in infant hamsters results in a marked expansion of the normally very limited ipsilateral retinotectal projection (13). In 34 hamsters subjected to removal of one eye within 12 h of birth, the receptive-field characteristics of superior collicular neurons ipsilateral and contralateral to the remaining eye were investigated quantitatively and compared to those of normal animals. In six additional neonatal enucleates, the density of the expanded retinotectal projection was studied with the autoradiographic method and an attempt was made to relate the anatomical reorganization with the electrophysiological findings, 2. The response characteristics of visual cells in the colliculus contralateral to the remaining eye were not significantly different from those observed in normal animals. In the ipsilateral tectum, however, numerous changes were observed. Visual receptive fields were abnormally large. The incidence of directional selectivity was markedly reduced, as were the magnitudes of the discharges elicited by either flashed or moving stimuli. Fewer cells were activated by small flashed spots and most of the units that were responsive to such stimulation failed to exhibit the surround suppression typical for the majority of tectal neurons in normal hamsters. Most cells in the ipsilateral colliculus responded only to relatively low (less than 50 degrees/s) stimulus velocities and response decrements resulting from repeated stimulation also occurred much more readily for the neurons tested on this side. 3. The results of additional experiments in neonatal enucleates (n = 8), which were also subjected to acute bilateral removal of the visual cortex, demonstrated that such damage resulted in a marked reduction in the incidence of directional selectivity in the colliculus contralateral to the remaining eye but had no effect on the responses of cells innervated by the aberrant ipsilateral pathway. 4. A correlation between the relative density of the ipsilateral retinal projection at different points in the colliculus, as demonstrated by the autroradiography and the nature of the visual responses obtained in different portions of the structure, indicated that receptive-field size was negatively correlated with the density of the aberrant retinotectal projection and that absolute responsivity (number of impulses elicited by an optimal stimulus) was positively correlated with autoradiographic grain density. 5. These findings demonstrate that while the aberrant retinocollicular projection can, along with the other visual inputs to the tectum, result in the organization of normal response properties for a small number of tectal neurons, the majority of the visual cells innervated by this pathway have responses that are appreciably different from normal.  相似文献   

9.
Advanced age in rats is associated with a decline in spatial memory capacities dependent on hippocampal processing. As yet, however, little is known about the nature of age-related alterations in the information encoded by the hippocampus. Young rats and aged rats identified as intact or impaired in spatial learning capacity were trained on a radial arm maze task, and then multiple parameters of the environmental cues were manipulated to characterize the changes in firing patterns of hippocampal neurons corresponding to the presence of particular cues or the spatial relationships among them. The scope of information encoded by the hippocampus was reduced in memory-impaired aged subjects, even though the number of neurons responsive to salient environmental cues was not different from that in young rats. Furthermore, after repeated manipulations of the cues, memory-intact aged rats, like young rats, altered their spatial representations, whereas memory-impaired aged rats showed reduced plasticity of their representation throughout testing. Thus changes in hippocampal memory representation associated with aging and memory loss can be characterized as a rigid encoding of only part of the available information.  相似文献   

10.
Two spatial tasks were designed to test specific properties of spatial representation in rats. In the first task, rats were trained to locate an escape hole at a fixed position in a visually homogeneous arena. This arena was connected with a periphery where a full view of the room environment existed. Therefore, rats were dependent on their memory trace of the previous position in the periphery to discriminate a position within the central region. Under these experimental conditions, the test animals showed a significant discrimination of the training position without a specific local view. In the second task, rats were trained in a radial maze consisting of tunnels that were transparent at their distal ends only. Because the central part of the maze was non-transparent, rats had to plan and execute appropriate trajectories without specific visual feedback from the environment. This situation was intended to encourage the reliance on prospective memory of the non-visited arms in selecting the following move. Our results show that acquisition performance was only slightly decreased compared to that shown in a completely transparent maze and considerably higher than in a translucent maze or in darkness. These two series of experiments indicate (1) that rats can learn about the relative position of different places with no common visual panorama, and (2) that they are able to plan and execute a sequence of visits to several places without direct visual feed-back about their relative position.  相似文献   

11.
Lateral suprasylvian cortex (LS) is an important source of visual projections to both the striatum and superior colliculus. Although these two LS efferent systems are likely to be involved in different aspects of visual processing, little is known about their functional properties. In the present experiments, 86 neurons in halothane-anesthetized, paralyzed cats were recorded along the posterior aspects of the medial and lateral banks of LS (PMLS and PLLS). Neurons were selected for analysis on the basis of antidromic activation from electrodes chronically implanted in the superior colliculus and caudate nucleus. The segregated nature of corticostriatal and corticotectal neurons was apparent; in no instance could a neuron be antidromically activated from both the superior colliculus and the caudate nucleus. Many common features were revealed between corticotectal and corticostriatal neurons; the majority of neurons in both populations were binocular and contralaterally dominant, showed similar responses to stationary flashed light, and expressed within-field spatial summation and surround inhibition. However, a number of information-processing features distinguished between corticotectal and corticostriatal neurons; the former were generally tuned to lower velocities than were the latter, and, for a given eccentricity in visual space, corticotectal neurons had smaller receptive fields than did corticostriatal neurons. Moreover, most corticotectal neurons displayed a marked preference for movements toward temporal visual space, whereas corticostriatal neurons revealed no specialization for a particular direction of movement. In addition, whereas corticotectal neurons were selective for receding stimuli, corticostriatal neurons were selective for approaching stimuli. The presence of these two corticofugal pathways is discussed in relation to their presumptive functional roles in the facilitation of attentive and orientation behaviors.  相似文献   

12.
In 2 experiments with 20 male black-hooded rats, Ss with bilateral lesions of the superior colliculus showed significantly poorer relearning of a horizontal/vertical stripe discrimination than control Ss. In Exp I, all Ss showed disruption of performance when a stimulus–response (S–R) separation was introduced by raising the stimuli above the site of responding. However, colliculectomized Ss were much more disturbed by the S–R separation than were control Ss. In Exp II, all Ss showed lower performance levels when conflicting patterns were introduced into the upper portion of the stimulus doors, but this time Ss with collicular lesions were less disturbed than controls. It is suggested (a) that when the stimulus and response sites are discontinuous, rats must make an appropriate orienting response to effectively sample the visual stimuli and (b) that lesions of the superior colliculus alter performance by interfering with this orienting behavior. The impairment in relearning is attributed to the absence of preoperative overtraining on the discrimination task. (24 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

13.
An important reaction in rodent models of persistent pain is for the animal to turn and bite/lick the source of discomfort (autotomy). Comparatively little is known about the supraspinal pathways which mediate this reaction. Since autotomy requires co-ordinated control of the head and mouth, it is possible that basal ganglia output via the superior colliculus may be involved; previously this projection has been implicated in the control of orienting and oral behaviour. The purpose of the present study was therefore, to test whether the striato-nigro-tectal projection plays a significant role in oral responses elicited by subcutaneous injections of formalin. Behavioural output from this system is normally associated with the release of collicular projection neurons from tonic inhibitory input from substantia nigra pars reticulata. Therefore, in the present study normal disinhibitory signals from the basal ganglia were blocked by injecting the GABA agonist muscimol into different regions of the rat superior colliculus. c-Fos immunohistochemistry was used routinely to provide regional estimates of the suppressive effects of muscimol on neuronal activity. Biting and licking directed to the site of a subcutaneous injection of formalin (50 microliters of 4%) into the hind-paw were suppressed in a dose-related manner by bilateral microinjections of muscimol into the lateral superior colliculus (10-50 ng; 0.5 microliter/side); injections into the medial superior colliculus had little effect. Bilateral injections of muscimol 20 ng into lateral colliculus caused formalin-treated animals to re-direct their attention and activity from lower to upper regions of space. Muscimol injected unilaterally into lateral superior colliculus elicited ipsilateral turning irrespective of which hind-paw was injected with formalin. Oral behaviour was blocked when the muscimol and formalin injections were contralaterally opposed; this was also true for formalin injections into the front foot. Interestingly, when formalin was injected into the perioral region, injections of muscimol into the lateral superior colliculus had no effect on the ability of animals to make appropriate contralaterally directed head and body movements to facilitate localization of the injected area with either front- or hind-paw. These findings suggest that basal ganglia output via the lateral superior colliculus is critical for responses to noxious stimuli which entail the mouth moving to and acting on the foot, but not when the foot is the active agent applied to the mouth. The data also suggest that pain produces a spatially non-specific facilitation of units throughout collicular maps, which can be converted into a spatially inappropriate signal by locally suppressing parts of the map with the muscimol.  相似文献   

14.
Superior colliculus lesions generally result in deficit in visual orienting described as sensory neglect. This observation was confirmed in this study: Rats with lesions did not orient to some stimuli that intact rats readily oriented to. However, rats with lesions did orient to stimuli that the intact rats treated as more salient. Also, when the less salient stimuli signaled aversive stimulation, the rats with lesions detected these stimuli. These findings suggest that superior colliculus lesions do not affect the detection of visual stimuli that have been neglected. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

15.
We report a method using radial basis function (RBF) networks to estimate the time evolution of population activity in topologically organized neural structures from single-neuron recordings. This is an important problem in neuroscience research, as such estimates may provide insights into systems-level function of these structures. Since single-unit neural data tends to be unevenly sampled and highly variable under similar behavioral conditions, obtaining such estimates is a difficult task. In particular, a class of cells in the superior colliculus called buildup neurons can have very narrow regions of saccade vectors for which they discharge at high rates but very large surround regions over which they discharge at low, but not zero, levels. Estimating the dynamic movement fields for these cells for two spatial dimensions at closely spaced timed intervals is a difficult problem, and no general method has been described that can be applied to all buildup cells. Estimation of individual collicular cells' spatiotemporal movement fields is a prerequisite for obtaining reliable two-dimensional estimates of the population activity on the collicular motor map during saccades. Therefore, we have developed several computational-geometry-based algorithms that regularize the data before computing a surface estimation using RBF networks. The method is then expanded to the problem of estimating simultaneous spatiotemporal activity occurring across the superior colliculus during a single movement (the inverse problem). In principle, this methodology could be applied to any neural structure with a regular, two-dimensional organization, provided a sufficient spatial distribution of sampled neurons is available.  相似文献   

16.
1. The response characteristics of visual, somatosensory, and auditory neurones in the golden hamster's superior colliculus were investigated.2. As has been noted for other mammalian species, a distinct difference between the functional organizations of the superficial and deeper layers of the superior colliculus was observed.3. Neurones in the superficial layers were exclusively visual, with small receptive-fields, and generally did not show response decrements with repeated stimulation. The sizes of the receptive-fields did not vary appreciably as a function of retinal eccentricity.4. In the deeper layers, visual receptive-fields were large, or could not be accurately delimited, and response habituation was often evident. In addition, many cells in the deeper layers of the colliculus responded only to somatosensory stimuli. Far fewer cells, which appeared to be confined to the caudal portions of the colliculus, responded to auditory stimuli. Polymodal cells were also encountered.5. Selectivity to opposing directions of movement was tested for ninety-four visual cells. Using a ;null' criterion, 27.7% of these cells were judged to be directionally selective. A distribution of the preferred directions of these cells showed a significant preference for movement with an upper-nasal component. With a statistical criterion, 60.6% of these cells were considered to show a significant asymmetry in responding to movement in opposing directions.6. Directional selectivity was also tested for ninety-two cells following acute, unilateral, lesions of the visual cortex. For the eighty cells recorded, homolateral to the ablated cortex, 27.5% were judged as directionally selective using the statistical criterion, while 12.5% were selective with the ;null' criterion. Of the twelve cells isolated in the colliculus, contralateral to the lesions, seven were judged as directionally selective with the statistical, and three with the ;null' criterion.7. The effects of visual cortical lesions upon directional selectivity appeared to be confined to cells in the superficial layers of the colliculus. It was suggested that directional selectivity of many cells in the superficial layers of the tectum of the hamster is organized cortically.8. A clear spatial correspondence was observed for the receptive-fields of visual, somatosensory, and auditory neurones.9. As has been suggested for other species, the hamster's superior colliculus appears to play an important role in orienting the animal toward visual, somatosensory, and auditory stimuli.  相似文献   

17.
We have studied the temporal relationship between visual responses in various visual cortical areas [17, 18, postero medial lateral suprasylvian (PMLS), postero lateral lateral suprasylvian (PLLS), 21a]) and the superficial layers of the cat superior colliculus (SC). To this end, simultaneous recordings were performed in one or several visual cortical areas and the SC of anesthetized paralyzed cats, and visually evoked multiunit responses were subjected to correlation analysis. Significant correlations occurred in 117 (24%) of 489 cortex-SC pairs and were found for all cortical areas recorded. About half of the significant correlograms showed an oscillatory modulation. In these cases, oscillation frequencies covered a broad range, the majority being in the alpha- and beta-band. On average, significant center peaks in cross-correlograms had a modulation amplitude of 0.34. Our analysis revealed a considerable intertrial variability of correlation patterns with respect to both correlation strength and oscillation frequency. Furthermore, cortical areas differed in their corticotectal correlation patterns. The percentage of cells involved a corticotectal correlation, as well as the percentage of significantly modulated correlograms in such cases, was low for areas 17 and PMLS but high for areas 18 and PLLS. Analysis of the cortical layers involved in these interactions showed that consistent temporal relationships between cortical and collicular responses were not restricted to layer V. Our data demonstrate a close relationship between corticotectal interactions and intracortical or intracollicular synchronization. Trial-by-trial analysis from these sites revealed a clear covariance of corticotectal correlations with intracortical synchronization. The probability of observing corticotectal interactions increased with enhanced local cortical and collicular synchronization and, in particular, with interareal cortical correlations. Corticotectal correlation patterns resemble in many ways those described among areas of the visual cortex. However, the correlations observed are weaker than those between nearby cortical sites, exhibit usually broader peaks and for some cortical areas show consistent phase-shifts. Corticotectal correlations represent population phenomena that reflect both the local and global temporal organization of activity in the cortical and collicular network and do not arise from purely monosynaptic interactions. Our findings show that both striate and extrastriate inputs affect the superficial SC in a cooperative manner and, thus, do not support the view that responses in the superficial SC depend exclusively on input from the primary visual areas as implied by the concept of "two corticotectal systems." We conclude that the corticotectal projections convey temporal activation patterns with high reliability, thus allowing the SC evaluation of information encoded in the temporal relations between responses of spatially disseminated cortical neurons. As a consequence, information distributed across multiple cortical areas can affect the SC neurons in a coherent way.  相似文献   

18.
1. The intra-axonal recording and horseradish peroxidase injection technique together with spontaneous eye movement monitoring has been employed in alert behaving monkeys to study the discharge pattern and axonal projections of mesencephalic saccade-related long-lead burst neurons (LLBNs). 2. Most of the recovered axons (N = 21) belonged to two classes of neurons. The majority (N = 13) were identified as efferents of the superior colliculus and had circumscribed movement fields typical of collicular saccade-related burst neurons. This discharge pattern, their responses to electrical stimulation of one or both superior colliculi, and their morphological appearance identified them as members of the T class of tectal efferent neurons. 3. Axons of these T cells deployed terminal fields within several saccade-related brain stem areas including the nucleus reticularis tegmenti pontis, which projects to the cerebellum; the nucleus reticularis pontis oralis and caudalis, which contains excitatory premotor burst neurons; the nucleus raphe interpositus, which contains omnipause neurons; the nucleus paragigantocellularis, which contains inhibitory premotor burst neurons, as well as other less differentiated parts of the brain stem reticular formation. 4. The other class of LLBNs (N = 4) had their somata in the medullary reticular formation just lateral to the interstitial nucleus of Cajal. They projected primarily to the raphe nuclei, the medullary reticular formation, and the paramedian reticular nucleus. Discharges were of the directional type with up ON directions (N = 3) and down ON directions (N = 1). 5. Other fibers, which project to pontine and medullary oculomotor structures but whose somata were not recovered (N = 4), illustrate that there are also other types of LLBNs that contribute to the generation and control of saccadic eye movements. 6. Our findings complement previous data about the axonal trajectories of T-type superior colliculus efferents. They also demonstrate the existence of LLBNs located in the mesencephalic reticular formation and their target areas in the brain stem. Implications of these findings for current concepts of oculomotor control are discussed.  相似文献   

19.
The presence of a commissure connecting the two superior colliculi suggests they do not act independently, but the function of the tectotectal connection has never been firmly identified. To develop a better understanding of this commissural system, the present study determined the distribution and morphology of tectotectal neurons in the cat and macaque monkey, two animals with well-studied, but different orienting strategies. First, we compared the distribution of tectotectal cells retrogradely labeled following WGA-HRP injections into the contralateral superior colliculus. In monkeys, labeled tectotectal cells were found in all layers, but were concentrated in the intermediate gray layer (75%), particularly dorsally, and the adjacent optic layer (12%). Tectotectal cells were distributed throughout nearly the entire rostrocaudal extent of the colliculus. In cats, tectotectal cells were found in all the layers beneath the superficial gray, but the intermediate gray layer contained the greatest concentration (56%). Labeled cells were almost exclusively located in the rostral half of the cat superior colliculus, in contrast to the monkey distribution. In the context of the representation of visuomotor space in the colliculus, the distribution of monkey and cat tectotectal cells suggests a correspondence with oculomotor range. So these neurons may be involved in directing orienting movements performed within the oculomotor range. The somatodendritic morphology of tectotectal cells in these two species was revealed by homogeneous retrograde labeling from injections of biocytin or biotinylated dextran amine into the contralateral colliculus. The cell classes contributing to this pathway are fairly consistent across the two species. A variety of neuronal morphologies were observed, so there is no single tectotectal cell type. Instead, cell types similar to those found in each layer, excepting the largest neurons, were present among tectotectal cells. This suggests that a sample of each layer's output is sent to the contralateral colliculus.  相似文献   

20.
Compared behavior of 34 male hooded rats with midbrain reticular formation (MRF) lesions with 17 operated controls in a variety of social interactions. Ss with MRF lesions at the level of the inferior colliculus displayed a marked enhancement of aggressive behavior with another male or female rat. However, Ss with MRF lesions at the superior collicular level did not exhibit alterations in aggressive behavior. Both groups with MRF lesions exhibited infrequent crawling under (a social contact behavior) and pain-elicited threat behavior. It is hypothesized that animals with MRF lesions at the inferior collicular level demonstrate enhanced aggressiveness only with conspecifics attempting to engage in social interaction. (25 ref.) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号