首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hybrid regularization technique developed at the Institute of Mathematics of Potsdam University (IMP) is used to derive microphysical properties such as effective radius, surface-area concentration, and volume concentration, as well as the single-scattering albedo and a mean complex refractive index, from multiwavelength lidar measurements. We present the continuation of investigations of the IMP method. Theoretical studies of the degree of ill-posedness of the underlying model, simulation results with respect to the analysis of the retrieval error of microphysical particle properties from multiwavelength lidar data, and a comparison of results for different numbers of backscatter and extinction coefficients are presented. Our analysis shows that the backscatter operator has a smaller degree of ill-posedness than the operator for extinction. This fact underlines the importance of backscatter data. Moreover, the degree of ill-posedness increases with increasing particle absorption, i.e., depends on the imaginary part of the refractive index and does not depend significantly on the real part. Furthermore, an extensive simulation study was carried out for logarithmic-normal size distributions with different median radii, mode widths, and real and imaginary parts of refractive indices. The errors of the retrieved particle properties obtained from the inversion of three backscatter (355, 532, and 1064 nm) and two extinction (355 and 532 nm) coefficients were compared with the uncertainties for the case of six backscatter (400, 710, 800 nm, additionally) and the same two extinction coefficients. For known complex refractive index and up to 20% normally distributed noise, we found that the retrieval errors for effective radius, surface-area concentration, and volume concentration stay below approximately 15% in both cases. Simulations were also made with unknown complex refractive index. In that case the integrated parameters stay below approximately 30%, and the imaginary part of the refractive index stays below 35% for input noise up to 10% in both cases. In general, the quality of the retrieved aerosol parameters depends strongly on the imaginary part owing to the degree of ill-posedness. It is shown that under certain constraints a minimum data set of three backscatter coefficients and two extinction coefficients is sufficient for a successful inversion. The IMP algorithm was finally tested for a measurement case.  相似文献   

2.
Aqili AK  Maqsood A 《Applied optics》2002,41(1):218-224
A simplified theoretical model has been proposed to predict optical parameters such as thickness, thickness irregularity, refractive index, and extinction coefficient from transmission spectra. The proposed formula has been solved for thickness and thickness irregularity in the transparent region, and then the refractive index is calculated for the entire spectral region by use of the interference fringes order. The extinction coefficient is then calculated with the exact formula in the transparent region, and an appropriate model for the refractive index is used to solve for the extinction coefficient in the absorption region (where the interference fringes disappear). The proposed model is tested with the theoretical predicted data as well as experimental data. The calculation shows that the approximations used for solving a multiparameter nonlinear equation result in no significant errors.  相似文献   

3.
Erlick C  Haspel M  Rudich Y 《Applied optics》2011,50(22):4393-4402
Simultaneously retrieving the complex refractive indices of the core and shell of coated aerosol particles given the measured extinction efficiency as a function of particle dimensions (core diameter and coated diameter) is much more difficult than retrieving the complex refractive index of homogeneous aerosol particles. Not only must the minimization be performed over a four-parameter space, making it less efficient, but in addition the absolute value of the difference between the measured extinction and the calculated extinction does not have an easily distinguished global minimum. Rather, there are a number of local minima to which almost all conventional retrieval algorithms converge. In this work, we develop a new (to our knowledge) retrieval algorithm that employs the numerical method known as simulated annealing with an innovative "temperature" schedule. This study is limited only to spherical particles with a concentric shell and to cases in which the diameter of both the core and the coated particle are known. We find that when the top ranking particle sizes according to their information content are combined from separate experiments to make up the particle size distribution, the simulated annealing retrieval algorithm is quite robust and by far superior to a greedy random perturbation approach often used.  相似文献   

4.
Zhou J  Moshary F  Gross B  Ahmed S 《Applied optics》2006,45(26):6876-6885
The Twomey iterative method has been applied to the retrieval of hydrosol microphysical properties. In particular, we focused on the retrieval of single and multimode particle size distributions from both simulated and experimental backscattering spectra in the 400-800 nm wavelength range. Assuming a known refractive index, both single-mode and multimode distributions were successfully retrieved through the introduction of an initial distribution biased toward larger particles. The simulation results were experimentally verified with standard polystyrene particles suspended in water within the diameter range of 0.2-2 microm for both narrow and broad monomodal distributions as well as more complicated multimode distributions. Finally, the technique was extended to the retrieval of an unknown refractive index.  相似文献   

5.
Amorphous and nanocrystalline TiO(2) thin films coated on a vitreous silica substrate by a solgel dip coating method are investigated for optical properties by spectroscopic ellipsometry (SE) together with transmission spectroscopy. A method of analysis of SE data to determine the degree of inhomogeneity of TiO(2) films has also been presented. Instead of the refractive index, the volume fraction of void has been assumed to vary along the thickness of the films and an excellent agreement between the experimental and calculated data of SE below the fundamental band gap has been obtained. The transmission spectrum of these samples is inverted to obtain the extinction coefficient k spectrum in the wavelength range of 300-1600 nm by using the refractive indices and parameters of structure determined by SE. The nonzero extinction coefficient below the fundamental band-gap energy (3.2 eV) has been obtained for the nanocrystalline TiO(2) and shows the presence of optical scattering in the film.  相似文献   

6.
SnSe films were pulse electrodeposited on tin oxide coated glass substrates at different duty cycles. The films were single phase with orthorhombic structure. Optical absorption measurements indicated a band gap in the range of 1.28–1.50 eV with decrease of duty cycle. Transmission spectra exhibited interference fringes. Using the envelope method, refractive index was calculated. From the refractive index and extinction coefficient data, real and imaginary part of dielectric constant were estimated. Optical conductivity was evaluated from the absorption coefficient and refractive index data. Optical data were analysed by the single-effective oscillator model.  相似文献   

7.
Arnott WP  Schmitt C  Liu Y  Hallett J 《Applied optics》1997,36(21):5205-5216
Infrared extinction optical depth (500-5000 cm(-1)) has been measured with a Fourier transform infrared spectrometer for clouds produced with an ultrasonic nebulizer. Direct measurement of the cloud droplet size spectra agree with size spectra retrieved from inversion of the extinction measurements. Both indicate that the range of droplet sizes is 1-14 mum. The retrieval was accomplished with an iterative algorithm that simultaneously obtains water-vapor concentration. The basis set of droplet extinction functions are computed once by using numerical integration of the Lorenz-Mie theory over narrow size bins, and a measured water-vapor extinction curve was used. Extinction and size spectra are measured and computed for both steady-state and dissipating clouds. It is demonstrated that anomalous diffraction theory produces relatively poor droplet size and synthetic extinction spectra and that extinction measurements are helpful in assessing the validity of various theories. Calculations of cloud liquid-water content from retrieved size distributions agree with a parameterization based on optical-depth measurements at a wave number of 906 cm(-1) for clouds that satisfy the size spectral range assumptions of the parameterization. Significance of droplet and vapor contribution to the total optical depth is used to evaluate the reliability of spectral inversions.  相似文献   

8.
A method for the simultaneous retrieval of gas concentrations and an extinction spectrum of aerosols and polar stratospheric clouds from infrared transmission spectra observed in the solar occultation geometry is described. It is particularly suited to measurements by Fourier-transform spectrometers with relatively low spectral resolution (0.1-1 cm(-1)). The method does not require a priori assumptions on aerosol properties; it utilizes only the fact that the wave-number dependence of aerosol extinction is much weaker than that of gas absorption. In this method, an aerosol extinction spectrum is approximated by a straight line within a relatively wide spectral range defined as mediumwindow.  相似文献   

9.
Complex-refractive-index spectra of Squarylium (SQ) dye-aggregate films deposited upon metal films have been investigated by measurements of properties of the films including absorption spectra (AS) and attenuated total reflection. Complex refractive indices are estimated by Kramers-Kronig analysis for the AS and by a theoretical curve-fitting analysis for attenuated total reflection. The dye-aggregate films exhibited an absorption that was blueshifted from that of a monomer, as a result of the H-aggregate formation of SQ molecules, and had a changing refractive index with anomalous dispersion about the H-absorption band. From both measurements of the SQ films it was found that there is a region of low absorption in the short-wavelength side of the absorption band and that the refractive index there is lower than that of glass.  相似文献   

10.
The extinction efficiencies as well as the scattering properties of particles of different porosity are studied. Calculations are performed for porous pseudospheres with small size (Rayleigh) inclusions using the discrete dipole approximation. Five refractive indices of materials covering the range from 1.20+0.00i to 1.75+0.58i were selected. They correspond to biological particles, dirty ice, silicate, and amorphous carbon and soot in the visual part of the spectrum. We attempt to describe the optical properties of such particles using Lorenz-Mie theory and a refractive index found from some effective medium theory (EMT) assuming the particle is homogeneous. We refer to this as the effective model. It is found that the deviations are minimal when utilizing the EMT based on the Bruggeman mixing rule. Usually the deviations in the extinction factor do not exceed approximately 5% for particle porosity P = 0 - 0.9 and size parameters x(porous) = 2 pi r(s,porous)/lambda < or approximately = 25. The deviations are larger for scattering and absorption efficiencies and smaller for particle albedo and the asymmetry parameter. Our calculations made for spheroids confirm these conclusions. Preliminary consideration shows that the effective model represents the intensity and polarization of radiation scattered by fluffy aggregates quite well. Thus the effective models of spherical and nonspherical particles can be used to significantly simplify the computations of the optical properties of aggregates containing only Rayleigh inclusions.  相似文献   

11.
The extinction spectra of aqueous sulfuric acid aerosols fully covering the mid-IR to visible regions from 750 to 23,000 cm(-1) (13.9-0.4 mum) have been measured in the laboratory with a Fourier-transform spectrometer. Both large and small aerosol particles with compositions of approximately 60-70-wt. % H(2)SO(4) were generated and their spectra recorded at 230 and 294 K. The spectra were fitted to a model incorporating room-temperature refractive-index data [Appl. Opt. 14, 208 (1975)] and Mie theory calculations to characterize the composition and size distributions of the aerosol samples.  相似文献   

12.
研究了一种Ag/SiO2/Ag组成的三角形纳米柱的LSPR消光光谱特性及其传感特性.时域有限差分(FDTD)法计算结果表明,三棱柱结构在中间夹层SiO2后,消光光谱峰值出现红移现象,并伴随着折射率灵敏度的增加.随着中间介质层厚度的增加,上下两层金属间表面等离子体耦合逐渐减弱,消光光谱峰值红移速度减慢.当介质层厚度为60nm时,金属层间的表面等离子体耦合消失,消光光谱与折射率灵敏度不再发生变化.对于实际制作时可能出现尖角钝化的三棱柱结构,中间介质层仍然表现出对其光学及传感特性的良好的调节作用.  相似文献   

13.
用椭偏光谱仪首次在光子能量为2.15.2eV的范围内,测量了不同热处理温度下Ba0.9Sr0.1TiO3(BST)薄膜的椭偏光谱.建立适当的拟合模型,并用Cauchy色散模型描述BST薄膜的光学性质,用最优化法获得了所有样品的光学常数(折射率n和消光系数k)谱及禁带能Eg.比较这些结果,初步得到了BST薄膜的折射率n、消光系数k和禁带能Eg随退火温度变化的变化规律.  相似文献   

14.
Ellipsometric and spectroscopic investigations of Hf1−xZrxO2 thin films were performed. Dispersion dependences of refractive indices and extinction coefficients in the wavelength interval 0.2-0.7 μm were obtained by optical-refractometric synthesis of absorption spectra. Optical-refractometric relation is applied to describe the dispersion of the refractive indices. Compositional behaviour of optical pseudogap and refractive indices of HfO2-ZrO2 thin films is studied.  相似文献   

15.
The reflectance spectra and refractive index of Nd:YAG laser-oxidized SiO2 layers with thicknesses from 15 to 75 nm have been investigated with respect to the laser beam energy density and substrate temperature. Thickness and refractive index of films have been determined from reflectance measurements at normal light incidence in the spectral range 300–800 nm. It was found that the oxide-growth conditions at higher substrate temperatures and laser powers greater than 3.36 J cm−2 provides a better film quality in terms of both optical thickness and refractive index. However, the refractive indices of the films are smaller in the whole spectral range studied as compared to that of conventional thermally grown SiO2. This might be due to the porous structure formed during the laser-assisted oxidation. The results suggest the need of post-oxidation annealing to improve the refractive indices of the films, suitable for Si-device applications.  相似文献   

16.
Wang L  Sun X  Li F 《Applied optics》2012,51(15):2997-3005
In retrieving particle size distribution from spectral extinction data, a critical issue is the calculation of extinction efficiency, which affects the accuracy and rapidity of the whole retrieval. The generalized eikonal approximation (GEA) method, used as an alternative to the rigorous Mie theory, is introduced for retrieval of the unparameterized shape-independent particle size distribution (PSD). To compute the extinction efficiency more efficiently, the combination of GEA method and Mie theory is adopted in this paper, which not only extends the applicable range of the approximation method but also improves the speed of the whole retrieval. Within the framework of the combined approximation method, the accuracy and limitations of the retrieval are investigated. Moreover, the retrieval time and memory requirement are also discussed. Both simulations and experimental results show that the combined approximation method can be successfully applied to retrieval of PSD when the refractive index is within the validity range. The retrieval results we present demonstrate the high reliability and stability of the method. By using this method, we find the complexity and computation time of the retrieval are significantly reduced and the memory resources can also be saved effectively, thus making this method more suitable for online particle sizing.  相似文献   

17.
《Thin solid films》2002,402(1-2):90-98
In the present work we studied the optical properties of undoped and La doped lead titanate thin films, and also demonstrated that the optical characterization of thin films can be used as an effective diagnostic tool to assess film quality. The optical properties of Pb1−xLaxTi1−x/4O3 [where x=0 (undoped), 10, 15, 20, 25 and 30 at.%] thin films were investigated using both transmission and reflection spectra in the 200–900-nm wavelength range. The refractive index (n), extinction coefficient (k) and the thickness of the film (df) were determined from the measured transmission spectra. The thickness of the film obtained from the interference fringes in transmission or reflection spectra matched well with those obtained from other methods. The appearance of interference fringes is an indication of the thickness uniformity of the film. The low value of extinction coefficient (in the order of 10−2) as observed in our films is a qualitative indication of excellent surface smoothness of the films. The densities of the films were estimated from their refractive indices using effective medium approximation. The average oscillator strength and its associated wavelength were estimated using a Sellmeier-type dispersion equation. Absorption coefficient (α) and the band-gap energy (Eg) were obtained for undoped and La doped films with varying La concentration. It was found that the refractive index and packing fraction values decrease with La doping. La doping was found to decrease the grain size of the films and increase the density of individual grains. Increased La content led to clustering of smaller grains. The observed variation of band-gap energy with La doping has been correlated to the observed microstructure of these films.  相似文献   

18.
Watanabe Y  Yamaguchi I 《Applied optics》2002,41(13):2414-2419
A wavelength-scanning heterodyne interference confocal microscope has proved to provide the tomographic image of the refractive indices of transparent and turbid media on the scale of geometrical depth when weakly reflected light with an optical power as low as of the order of 10(-14) W is used. The refractive indices of the transparent object and the turbid media were measured with accuracies of -0.5% and approximately 3%, respectively. This imaging method is advantageous for evaluating quantitative refractive indices and internal structures.  相似文献   

19.
The paper describes optical study of SiC, C and NiC layers deposited on Si substrates by double beam ion sputtering (DBIS) method. The following optical methods: ellipsometry, bidirectional reflection distribution function (BRDF) and total integrated scattering (TIS) studies have been applied. The obtained results allowed us to determine the refractive indices, extinction coefficients and the roughness parameters of DBIS films. Also surface profiles of optical constants determined from scanning ellipsometric measurements have been presented. The power spectral density functions (PSD) of surface roughness for studied samples have been determined. The influence of the deposition technology on film topography has been discussed.  相似文献   

20.
Yeh YL 《Applied optics》2008,47(10):1457-1464
A nondestructive measurement system based on a position sensing detector (PSD) and a laser interferometer for determining the thickness and refractive indices of birefringent optical wave plates has been developed. Unlike previous methods presented in the literature, the proposed metrology system allows the refractive index and thickness properties of the optical plate to be measured simultaneously. The experimental results obtained for the e-light and o-light refractive indices of a commercially available birefringent optical wave plate with refractive indices of n(o)=1.542972 and n(e)=1.552033 are found to be accurate to within 0.004132 and 0.000229, respectively. Furthermore, the experimentally derived value of the wave plate thickness deviates by no more than 0.9 microm from the analytically derived value of 453.95 microm. Overall, the experimental results confirm that the proposed metrology system provides a simple yet highly accurate means of obtaining simultaneous measurements of the refractive indices and thickness of birefringent optical wave plates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号