共查询到19条相似文献,搜索用时 62 毫秒
1.
针对人脸识别中的图像存在噪声等情况,提出基于鉴别性低秩表示及字典学习的算法。使用鉴别性低秩子空间恢复算法(discriminative low-rank representation, DLRR)获得类别间尽可能独立且干净的训练样本,然后通过引入基于Fisher准则的字典学习(Fisher Discrimination Dictionary Learning, FDDL)方法得到结构化字典,其子字典对对应的类有较好的表示能力,约束编码系数具有较小类内散列度和较大类间散列度。最后对测试样本稀疏线性表示时正确类别的样本贡献更大。在标准人脸数据库上的实验结果表明该算法有较好性能。 相似文献
2.
典型相关分析(CCA)是一种经典的多特征提取算法,它能够有效地抽取两组特征之间的相关性,现已被广泛应用于模式识别。在含噪声数据情况下,CCA的特征表示性能受到限制。为了使CCA更好地处理含噪声数据,提出一种基于低秩分解的典型相关分析算法——鲁棒典型相关分析(robust canonical correlation analysis,RbCCA)。RbCCA首先对特征集进行低秩分解,得到低秩分量和噪声分量,以此分别构建对应的协方差矩阵。通过最大化低秩分量的相关性,同时最小化噪声分量的相关性来建立判别准则函数,进而求取鉴别投影矢量。在MFEAT手写体数据库、ORL和Yale人脸数据中的实验结果表明,在包含噪声的情况下,RbCCA的识别效果优于现有的典型相关分析方法。 相似文献
3.
4.
5.
基于回归分析的人脸识别方法在处理不完备数据矩阵时,先对矩阵进行填充,再使用人脸识别方法,因此会降低分类性能.为了更有效地执行关于不完备数据的识别,文中将低秩矩阵填充和低秩表示学习整合在同一个模型,提出基于低秩表示和低秩矩阵填充的人脸识别方法.通过最小化表示系数和矩阵秩交替计算样本低秩表示系数矩阵和恢复矩阵缺失项,再使用最近邻分类器实现分类.在一些公开人脸数据集上的实验表明,在训练样本矩阵元素随机缺失时,文中方法可以有效提高识别精度及降低填充误差. 相似文献
6.
7.
在实际的人脸识别中,给定的训练图像往往存在遮挡和噪声,导致稀疏表示分类(SRC)算法的性能下降。针对上述问题,提出一种基于结构化低秩表示(SLR)和低秩投影的人脸识别方法--SLR_LRP。首先通过SLR对原始训练样本进行低秩分解得到干净的训练样本,根据原始训练样本和恢复得到的干净训练样本得到一个低秩投影矩阵;然后将测试样本投影到该低秩投影矩阵;最后使用SRC对恢复后的测试样本进行分类。在AR人脸库和Extended Yale B人脸库上的实验结果表明,SLR_LRP可以有效处理样本中存在的遮挡和像素破坏。 相似文献
8.
针对现有低秩表示(LRR)算法中全局与局部人脸特征信息融合不足的问题,提出了一种新的人脸识别算法——基于特征化字典的低秩表示(LRR-CD)。首先,将每张人脸照片表示成一个个特征化字典的集合,然后同时最小化基于训练样本的低秩重构特征系数以及与之相对应的类内特征差异。为了获得高效且具有高判别性的人脸图像的特征块重构系数矩阵,提出了一种新的数学公式模型,通过同时求解训练样本中相对应的特征块以及对应的类内特征差异词典的低秩约束问题,尽可能完整地保留原始高维人脸图像中的全局和局部信息,尤其是局部类内差异特征。另外,由于对特征块中信息的充分挖掘,所提算法对于一般程度上的面部遮挡和光照等噪声影响具有良好的鲁棒性。在AR、CMU-PIE和Extended Yale B人脸数据库进行多项对比实验,由实验结果可知LRR-CD相较于对比的稀疏表示(SRC)、协从表示(CRC)、低秩表示正规切(LRR-NCUT)和低秩递归最小二乘(LRR-RLS)算法在平均识别率上有2.58~17.24个百分点的提高。实验结果表明LRR-CD性能优于与之对比的算法,可以更高效地用于人脸全局和局部特征信息的融合,且具有优良的识别率。 相似文献
9.
10.
由于数据本身的自表示特性,当给定一个字典时,同类样本理论上具有相似的线性表示,所以所有样本的表示矩阵具有块对角结构。但在由于样本中存在的各种污损,数据子空间结构可能会被破坏。为了解决这一问题,很多基于低秩表示的恢复算法相继提出,但是仅有对表示的低秩约束并不能很好地将原始训练样本转化到理想的低秩子空间。因此,提出了一个鲁棒的结构化低秩恢复算法(Robust Structured Low-Rank Recovery,RSLRR)。RSLRR利用理想的标签矩约束阵促进低秩表示趋近于块对角结构,以此挖掘更多的潜在结构信息。同时,为了减少严格的趋近0-1标签矩阵造成的结构信息损失,RSLRR增加了一个正则化项用来减弱非块对角系数的负面影响。通过RSLRR算法可以得到一个判别的结构化字典,并可计算出一个低秩投影矩阵将所有测试样本有效的投影到其相应的低秩子空间。在AR和CMU PIE数据库上的实验结果验证了RSLRR算法的有效性和鲁棒性。 相似文献
11.
12.
13.
针对
人脸图像中表情变化、遮挡、光照的问题,本文提出了一种新颖的基于低秩分块稀疏表示的
人脸识别算法。该算法采用了一种新的结构不相关的低秩矩阵恢复方法,同时采用离散余弦
变换方法联合处理人脸图像中遮挡、掩饰和光照的问题,对处理过的图片采用一种独特的重
叠分块方法,利用冗余信息有效地提高了算法的识别率。在分类阶段,利用Alignment pool
ing的方法,有效地提高了识别速度。该算法在标准人脸数据库上进行了多次实验,实验结
果表明:与现有人脸识别算法相比,算法的识别准确率和计算效率都得到了一致提高。 相似文献
14.
In this paper, a low rank representation based projections (LRRP) method is presented for face recognition. In LRRP, low rank representation is used to construct a nuclear graph to characterize the local compactness information by designing the local scatter matrix like SPP; the total separability information is characterized by the total scatter like PCA. LRRP seeks the projection matrix simultaneously maximizing the total separability and the local compactness. Experimental results on FERET, AR, Yale face databases and the PolyU finger-knuckle-print database demonstrate that LRRP works well for face recognition. 相似文献
15.
针对传统低秩表示聚类方法存在的稀疏性不足及噪声敏感等问题,提出了一种基于局部图拉普拉斯约束的鲁棒低秩表示聚类模型. 一方面,通过加入图像数据局部相似性的约束,在保持表示矩阵分块对角的特性下,增强了其稀疏性;另一方面,从数据相关性的角度分析了低秩表示模型的聚类性质, 通过采用鲁棒低秩表示模型,不仅降低了噪声的干扰,而且减弱了表示字典数据之间的线性相关性,从理论上保证了最终的邻接矩阵具有分块对角的良好聚类性质. 与传统低秩表示方法相比,本文得到的表示矩阵既保证了分块性质,又更加稀疏,仿真实验结果表明聚类效果有明显提升. 相似文献
16.
目前,大部分图像分类算法为了获取较高的性能均需要充分的训练学习过程,然而在实际应用中,往往存在训练样本不足及过拟合等问题。为了避免上述问题出现,在朴素贝叶斯最近邻分类算法的原理框架下,基于非负稀疏编码、低秩稀疏分解以及协作表示提出一种非参数学习的图像分类算法。首先,基于非负稀疏编码和最大值汇聚操作表示图像信息,并构建具有低秩性质的同类训练图像集的局部特征矩阵;其次,采用低秩稀疏分解结合别类标签信息构建两类视觉词典以充分利用同类图像的相关性和差异性;最后基于协作表示表征测试图像并进行分类决策,实验结果验证了所提算法的有效性。 相似文献
17.
对于遮挡、光照等影响因素,低秩线性回归模型具有很好的鲁棒性。LRRR(Low Rank Ridge Regression)以及DENLR(Discriminative Elastic-net Regularized Linear Regression)通过正则化系数矩阵在一定程度上减少了LRLR(Low Rank Linear Regression)产生的过拟合现象。但其没有考虑子空间数据的错误逼近,投影矩阵不能准确地将数据映射到目标空间。鉴于此,提出了一种运算更快、更具判别性的低秩线性回归分类新方法。首先,将0-1构成的矩阵作为线性回归的目标值;其次,利用核范数作为低秩约束的凸近似;然后,通过正则化各类别之间的距离矩阵和模型输出矩阵来降低过拟合,同时可以增强投影子空间的判别性;再次,利用增广拉格朗日乘子(Augmented Lagrangian Multiplier,ALM)优化目标函数;最后,在子空间中利用最近邻分类器进行分类。在AR、FERET人脸数据库、Stanford 40 Actions、Caltech-UCSD Bird以及Oxford 102 Flowers数据库上进行相关算法的对比实验,结果表明所提算法是有效的。 相似文献
18.
SAR Sea Ice Image Segmentation Method based on Low Rank Sparse Representation and Improved MRF Model
Accurate segmentation of Synthetic Aperture Radar (SAR)images is the premise of interpreting the distribution information of sea ice.However the existing segmentation methodsare seriously interfered by speckle noise,which leads to high segmentation error and low reliability interpreting results.In this paper,a novel sea ice SAR image segmentation method based on low rank sparse representation is proposed,firstly sparse components are extracted from the source image by using robust principal component,and then bilateral filter is used to enhance the image details.Due to the MRF segmentation model based on fixed potential function cannot accurately reflect the relevance between the areas,MRF segmentation model based on interactive potential function is built to segment the sea ice image accurately.A series of Radarsat satellites data are tested to validate performance of the proposed method,the results show that compare with traditional segmentation algorithms,the proposed method algorithm can not only maintain the connectivity of the image better,but also has higher segmentation accuracy. 相似文献
19.
针对人脸图片的遮挡、伪装、光照及表情变化等问题,根据Gabor特征对遮挡、伪装、光照及表情变化有着更强的鲁棒性的特点,提出了联合Gabor误差字典和低秩表示的人脸识别算法(GDLRR)。首先对训练样本和测试样本分别进行Gabor特征提取,并将这些特征组成待测试的特征字典;然后将一个单位阵进行Gabor特征提取并训练成一个更紧凑的Gabor误差字典;最后联合Gabor误差字典和训练特征字典对测试特征字典进行低秩表示后进行分类识别。各类实验表明,提出的改进算法对人脸识别的各类问题都有着更强的鲁棒性和更高的识别准确率。 相似文献