共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
基于改进HHT和样本熵的脑电信号特征提取 总被引:1,自引:0,他引:1
针对运动想象脑电信号在经验模态分解(EMD)后人为选取固有模态函数(IMF)导致重构信号混入噪声且丢失有用信息的问题,提出一种改进希尔伯特‐黄变换(HHT)和样本熵结合的特征提取方法。在原始脑电信号经过EMD后,计算各个IM F与原始信号的相关系数以及IM F中瞬时频率在μ/β节律频带内的个数,提取有效IM F的能量均值,联合计算脑电信号的样本熵构成特征向量,采用支持向量机(SVM )分类器对提取的特征进行分类,在智能轮椅平台上对算法进行验证。验证结果表明,采用改进 HHT结合样本熵的智能轮椅系统有较高正确识别率,稳定性更好。 相似文献
3.
4.
5.
6.
7.
8.
9.
文章提出了模式识别的最大熵方法,其基本思想是求出最大熵概率分布,再求出条件概率分布,进而作出二值分类。它的特点是能最大限度地利用已有信息做出最合理的推测。求解最大熵分布时,需要解复杂的约束优化问题,为此使用了神经网络,从而使该方法结合了神经网络的很多优点。该方法的突出优点是在小样本情况下仍能保持很好的识别率。 相似文献
10.
基于BP神经网络的手写数字识别的算法 总被引:1,自引:0,他引:1
由于BP神经网络具有并行处理信息、自组织、自学习信息等优点,本文采用了BP神经网络对手写数字识别进行运算,提取笔画密度、长宽比和欧拉数等特征作为训练样本.并用Matlab对其算法进行仿真,并且很准确的识别出来,说明其有非常广泛的前景. 相似文献
11.
针对剪纸纹样艺术夸张变形的特点,将剪纸图像进行预处理,提取7个不变矩作为剪纸纹样的特征向量,采用LM算法优化BP神经网络,通过归一化后的不变矩对BP神经网络进行训练,应用训练后的神经网络作为分类器对剪纸纹样进行模式识别,实验证明该方法能够较好地识别有一定艺术变形的剪纸纹样。 相似文献
12.
对手部动作进行模式识别,首先将采集到的肌电信号进行降噪处理,选择时域分析法中的方差算法对采集信号进行特征提取。将特征信号进行归一化处理,实验发现普通BP神经网络分类器出现学习速率慢,泛化能力较差,不同动作识别准确率差别较大等问题。针对以上问题,提出了一种改进型BP神经网络,将神经网络输入数据进行人工升维处理,并对网络学习速率慢的原因进行理论推导,然后引入交叉熵代价函数并对其进行正则化处理,以提高网络的泛化能力以及网络的识别准确率。实验结果表明,改进型BP神经网络的学习速率、泛化能力以及动作分类的准确率均优于普通网络,识别准确率平均为94.34%。 相似文献
13.
目前常用的物体识别方法,其过程非常复杂,信息量和计算量都很大.结合遗传算法的神经网络方法,充分利用GA的全局搜索能力、BP算法的局部搜索能力和鲁棒性强的特性,提出了一种用遗传算法全局优化神经网络拓扑结构和网络权值的新编码方案进行物体识别方法.仿真结果表明,该方法既解决了BP神经网络对初始权值敏感和容易局部收敛的问题,又加快GA.BP网络的收敛速度,提高收敛精度且识别率较高,从而验证了该方法的有效性. 相似文献
14.
传统运动想象脑电信号识别方法需要人为提取大量特征,识别性能受研究人员经验影响较大,主观性强;提出一种基于希尔伯特变换(HT)联合卷积神经网络(CNN)的运动想象脑电信号自动识别方法,首先利用HT对原始EEG信号进行分析,实现一维数据向二维幅-相图像转换的同时增加信息提取维度;然后将其作为输入利用CNN层次化的对幅-相二维图像进行理解和解译,自动提取特征并完成分类识别,基于BCI竞赛中所用Graz数据集开展试验,结果表明相对于传统特征提取方法,文章所提算法在低、中、高信噪比条件下均能获得更好的识别性能,具有更强的噪声鲁棒性. 相似文献
15.
用基于非线性子空间的核独立成分分析方法(KICA)对人脸图像进行特征提取,用三层的BP网络作为分类器,对人脸进行识别。在简单介绍基本的独立成分分析(ICA)的基本原理的基础上,对KICA的原理和算法作了详细的描述,并详细介绍了三层BP网络的设计。最后为了验证KICA+BP网络的效果,进行对比实验和分析。实验和分析的结果表明,在人脸识别中,该方法的效果明显好于其它方法。 相似文献
16.
17.
对神经网络理论和神经网络分类器进行了研究,提出了基于BP神经网络分类器的交通标志识别模型。通过大量实验和比较,得到了识别效率高的模型,并将这一模型应用到所研究的交通标志识别系统,从而对系统作了初步的实现。 相似文献
18.
19.
目前大多数声音识别系统在无噪声环境下可以达到很高的识别率,但是在噪声环境下,识别率急剧下降。针对这个问题,提出一种基于小波矩和BP网络的声音识别方法。根据声音信号生成声谱图;通过小波矩对声谱图进行特征提取,选取有代表性意义的特征参数;根据选取的参数进行BP网络分类识别,从而识别声音的种类。实验结果表明,该方法在不同噪声种类以及不同信噪比的噪声环境下仍然具有较好的识别效果,克服了低信噪比下识别率低的缺陷。 相似文献
20.
由于色斑和毛孔等强噪声的干扰,人脸皱纹识别特别是对面部细纹理的识别受到了严重影响。针对上述问题提出了一种基于Gabor滤波器和BP神经网络相结合的人脸皱纹识别算法。通过训练好的BP神经网络人脸皮肤图像首先识别是否存在皱纹,再分别自动标注存在皱纹的区域。本算法首先基于不同年龄的多幅人脸照片创建皱纹样本库,采用样本库训练神经BP网络。其次分别选取含皱纹和不含皱纹的图片,然后用Gabor滤波器组计算出图片的频谱特征,将它们作为训练样本,训练得到用于识别的BP神经网络。大量测试结果表明,本算法能够消除或减少色斑、毛孔等噪声的干扰,对有皱纹区域和无皱纹区域的识别率可达到85%以上。 相似文献