首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
受制于嵌入式平台的性能和资源制约,基于深度学习的车辆检测算法在部署时面临网络参数量过大、模型复杂、移植困难等问题。提出一种基于MobileNetv3网络的YOLOv3改进目标检测算法,使用轻量级MobileNetv3网络替换传统主干特征提取网络Darknet53,修改FPN特征金字塔为FPN+PAN结构,同时引入注意力机制以提高算法的检测精度。在计算机平台和瑞芯微RV1126嵌入式平台上的实验结果表明,改进后的YOLOv3算法模型减小50%,检测精度提升0.85%,推理时间缩短50%。  相似文献   

2.
YOLOv4目标检测算法主干网络庞大且参数量和计算量过多,难以部署在算力和存储资源有限的移动端嵌入式设备上。提出一种改进的YOLOv4目标检测算法,使用轻量化的ShuffleNet V2网络作为主干特征提取网络,更换模型激活函数及扩大卷积核,同时将YOLOv4网络中的普通卷积替换为深度可分离卷积,降低算法参数量、计算量和模型占用空间。在ShuffleNet V2网络结构的改进过程中分析并剪裁其基本组件,利用2个3 × 3卷积核级联的方式增强网络感受野,并使用Mish激活函数进一步提升网络检测精度和模型推理速度。在GPU平台和VisDrone 2020数据集上的实验结果表明,与YOLOv4算法相比,改进的YOLOv4算法在牺牲1.8个百分点的检测精度情况下,提高了27%的检测速度,压缩了23.7%的模型容量,并且能够充分发挥ZYNQ平台并行高速数据处理及低功耗的优势。  相似文献   

3.
随着机器人技术的快速发展,智能机器人广泛应用于变电站巡检,针对目前目标检测算法参数量过大且嵌入式设备性能有限,难以在嵌入式平台上实现实时检测的问题,提出了一种基于改进 YOLOv4 的嵌入式变电站仪表检测算法。以 YOLOv4 为基础,采用MobileNetV3 作为主干特征提取网络,在保证模型能够有效提取特征的情况下,降低运算量,提高检测速度;与此同时,将特征提取后的路径聚合网络(PANet)中的卷积运算替换成深度可分离卷积;采用迁移学习的训练策略克服模型训练困难问题;最后,利用TensorRT对改进后的模型进行重构和优化,实现快速和高效的部署推理。改进后的算法在嵌入式端 NVIDIA Jetson Nano上进行了测试,实验结果表明,在牺牲了较少精度的情况下,检测速度提高了 2 倍,达到 15 FPS,为边缘计算场景下的仪表实时检测提供了可能。  相似文献   

4.
随着人工智能技术的快速发展,基于深度学习的目标检测算法在诸多行业得到了应用。针对当前输电线路影像中典型障碍物目标识别对人工要求较高的问题,提出了基于YOLOv5模型剪枝的算法来对输电线路附近典型目标进行检测。首先,算法进行基础训练后得到一个检测精度和推理速度两种性能比较均衡的网络模型,再进行稀疏训练以获得参数较为稀疏的神经网络模型,最后,采取不同剪枝策略对网络进行修剪,达到压缩模型大小提高推理速度的目的。在自制数据集上使用多种算法进行对比试验,实验结果表明:相较于YOLOv4、CenterNet和SSD算法,所提算法在保持相对较高检测精度条件下提高了检测速度,能够满足实际需要。  相似文献   

5.
王程  刘元盛  刘圣杰 《计算机工程》2023,49(2):296-302+313
行人检测在无人驾驶环境感知领域具有重要应用。现有行人检测算法多数只关注普通大小的行人目标,忽略了小目标行人特征信息过少的问题,从而造成检测精度低、应用于嵌入式设备中实时性不高等情况。针对该问题,提出一种小目标行人检测算法YOLOv4-DBF。引用深度可分离卷积代替YOLOv4算法中的传统卷积,以降低模型的参数量和计算量,提升检测速度和算法实时性。在YOLOv4骨干网络中的特征融合部分引入scSE注意力模块,对输入行人特征图的重要通道和空间特征进行增强,促使网络学习更有意义的特征信息。对YOLOv4颈部中特征金字塔网络的特征融合部分进行改进,在增加少量计算量的情况下增强对图像中行人目标的多尺度特征学习,从而提高检测精度。在VOC07+12+COCO数据集上进行训练和验证,结果表明,相比原YOLOv4算法,YOLOv4-DBF算法的AP值提高4.16个百分点,速度提升27%,将该算法加速部署在无人车中的TX2设备上进行实时测试,其检测速度达到23FPS,能够有效提高小目标行人检测的精度及实时性。  相似文献   

6.
为更高效利用变电站巡检机器人开展电力巡检工作,满足电力行业发展对智能化巡检的需求,研究了面向电力巡检机器人的电力设备状态检测算法。首先,根据深度网络部署硬件芯片应用情况与性能对比,选择海思Hi3559A芯片作为算法移植的嵌入式平台。然后综合考虑各种检测算法的精度与速度,选用YOLOv3算法作为设备状态检测的基本判别模型。为了提升检测算法速度并减少模型体积,开展模型压缩算法及轻量型YOLOv3模型设计研究,分别提出了改进的小型化YOLOv3模型和基于通道剪枝与层剪枝结合的模型压缩方法,提高模型上下层的语义信息及剪枝后模型的精度保持。根据测试结果选择最优的模型在机器人前端部署,提出的轻量化YOLOv3模型很好地保持了设备目标与异物检测的精度,检测速度提升了4倍。  相似文献   

7.
为解决在嵌入式设备上实时、高精度检测司机安全驾驶监督的问题,本文基于目标检测中经典的深度学习神经网络YOLOv3-tiny,运用通道剪枝技术成功在目标检测任务中实现了模型压缩,在精度不变的情况下减少了改进后神经网络的计算总量和参数总数.并基于NVIDIA的推理框架TensorRT进行了模型层级融合和半精度加速,部署加速后的模型.实验结果表明,加速模型的推理速度约为原模型的2倍,参数体积缩小一半,精度无损失,实现了高精度下实时检测的目的.  相似文献   

8.
针对传统目标检测跟踪算法检测精度低、鲁棒性差的缺点,以及交叉路口图像视频资源冗余的现象和车辆密集程度高的特点,提出了一种基于改进YOLOv5和DeepSort算法模型的交叉路口实时车流量检测方法,在MS COCO和BDD100k相结合的数据集上,采用改进的YOLOv5算法模型实现视频小目标车辆检测,利用深度学习多目标跟踪算法DeepSort对检测的车辆进行实时跟踪计数,实现了交叉路口监控端对端的实时车流量检测。通过分析比较不同参数的模型,最终选定了YOLOv5m模型。实验结果表明,该方法在复杂环境、车辆遮挡和目标密集程度高等环境下检测速度更加快,对车辆的检测效果更好,平均准确度达到96.6%。该方法完全满足目标实时性检测的要求,能充分满足交叉路口车辆检测的有效性,满足实际需要的使用需求。  相似文献   

9.
严禁电动车违规载人是新交通法规中的重要内容,针对目前缺乏有效的检测电动车违规载人算法的现状,设计了一种基于改进的YOLOv5目标检测算法与边缘设备相结合的电动车违规载人检测系统。首先构建电动车行驶数据集;其次以YOLOv5网络模型为基础,引入轻量化网络Mobilenetv3、ECA-Net注意力机制、Slim-Neck结构和SPPFCSPC空间金字塔池化结构,提升针对电动车违规载人的检测精度,并且与原算法做消融实验;最后将改进后的算法部署在边缘设备Jetson Nano上进行实时推理。通过分析实验数据,改进后算法的参数量下降为原YOLOv5n的18%,在Jetson Nano上其推理速度提升了62%,最快推理速度可以达到17 FPS。改进后的算法在Jetson Nano上可以在提升检测精度的同时大幅提高推理速度,满足在不同场景下进行边缘部署的需求。  相似文献   

10.
YOLOv4-Tiny目标检测网络算法存在参数多和计算量大等问题,无法部署在资源有限的平台上。提出一种基于GhostNet残差结构的主干轻量级目标检测网络算法YOLO-GhostNet。该算法采用GhostNet结构将普通卷积分成两步,即使用较少的卷积核生成一部分特征图,对生成的特征图通过简单计算获得另一部分特征图,并将两组特征图进行拼接,以减少计算所需资源与参数量。通过GhostNet构建残差结构的YOLO-GhostNet算法在经过批量归一化层优化后模型尺寸只有2.18 MB,较YOLOv4-Tiny算法模型尺寸减小90%。YOLO-GhostNet算法在GPU加速环境下平均处理图片速度比YOLOv4-Tiny算法提高24%,CPU处理速度比YOLOv4-Tiny加快56%。实验结果表明,该算法在饮料测试集中的平均精确度均值达到79.43%,相比YOLOv4-Tiny算法,其在精度无损失情况下能够大幅降低网络计算量和参数量,同时加快推理速度,更适合部署于资源算力不足的嵌入式设备。  相似文献   

11.
张传深  徐升  胡佳  王强 《集成技术》2023,12(4):18-31
目前,安全帽检测系统主要使用固定摄像头,无法实现全区域检测,而基于深度学习的检测算法结构复杂、计算成本高,无法满足移动端和嵌入式设备的部署要求。针对上述问题,该文提出一种基于无人机的安全帽轻量型视觉检测算法。系统通过无人机平台搭载的相机对施工现场进行图像采集,并无线传输至后台计算机进行处理,检测算法基于 YOLOv5s 框架进行了轻量化改进。针对无人机采集影像中目标占比较小的问题,该文采用了多尺度检测、图像预处理、正负样本不均衡等方法,对 YOLOv5s 目标检测算法进行针对性改进。测试结果表明,与原模型相比,轻量型目标检测模型的平均精度均值仅下降了 1.72%,但在同一 CPU 上的推理速度提升了 1 倍,浮点计算量由原来的每秒 165 亿次压缩至每秒 34 亿次,模型大小约为原模型的 1/10。  相似文献   

12.
外观检测涉及对图像或视频中的物体进行准确和高效的识别和定位,为了解决物体表面小尺寸目标检测的问题,研究通过优化YOLOv3网络模型,引入多尺度检测和深度可分离卷积技术来提高检测精度和模型效率,以增强对小尺寸目标的识别能力,再采用深度可分离卷积技术来减少计算量,并提高模型的训练效果。实验结果表明,改进后的算法在物体表面小尺寸外观检测方面表现出明显的提升,平均精度达到71.52%,比原始模型提高11.37个百分点。同时,通过减少计算量和提高模型速度,实现了35.6帧/秒的检测速度。研究可以优化算法,提高小尺寸目标检测的准确性和鲁棒性,推动其在计算机视觉领域的广泛应用。  相似文献   

13.
为了进一步提高多尺度目标检测的速度和精度,解决小目标检测易造成的漏检、错检以及重复检测等问题,提出一种基于改进YOLOv3的目标检测算法实现多尺度目标的自动检测。首先,在特征提取网络中对网络结构进行改进,在残差模块的空间维度中引入注意力机制,对小目标进行关注;然后,利用密集连接网络(DenseNet)充分融合网络浅层信息,并用深度可分离卷积替换主干网络中的普通卷积,减少模型的参数量,提升检测速率。在特征融合网络中,通过双向金字塔结构实现深浅层特征的双向融合,并将3尺度预测变为4尺度预测,提高了多尺度特征的学习能力;在损失函数方面,选取GIoU(Generalized Intersection over Union)作为损失函数,提高目标识别的精度,降低目标漏检率。实验结果表明,基于改进YOLOv3(You Only Look Once v3)的目标检测算法在Pascal VOC测试集上的平均准确率均值(mAP)达到83.26%,与原YOLOv3算法相比提升了5.89个百分点,检测速度达22.0 frame/s;在COCO数据集上,与原YOLOv3算法相比,基于改进YOLOv3的目标检测算法在mAP上提升了3.28个百分点;同时,在进行多尺度的目标检测中,算法的mAP有所提升,验证了基于改进YOLOv3的目标检测算法的有效性。  相似文献   

14.
为了更准确地检测高速公路隧道内停车行为,提出一种基于改进YOLOv3车辆检测模型的高速公路隧道内停车检测方法。通过筛选VOC数据集以及实际高速公路隧道内的车辆图片制作专门用于高速公路隧道内车辆检测的数据集,选取YOLOv3目标检测模型作为车辆检测的基础网络结构,并对其进行加深网络结构的改进使其能够准确检测隧道内的车辆。将Deep SORT跟踪算法应用于改进的停车检测模型中,对车辆进行跟踪从而计算行驶速度,并创新性地设置双重速度阈值来判别车辆的停车行为。实验结果表明,经过改进的YOLOv3模型相比于原模型,在VOC-vehicle数据集和Tunnel-vehicle数据集上的mAP都有所提升,最终获得了mAP为98.19%的高速公路隧道车辆检测模型。将基于改进YOLOv3的高速公路隧道内停车检测方法在高速公路隧道视频上进行测试,可以有效地在高速公路隧道中完成停车检测的任务。  相似文献   

15.
考虑多目标跟踪过程中存在的实时性和身份跳变问题,提出一种基于检测的多车辆跟踪算法。首先利用Mobilenetv2替换YOLOv3检测算法的主干网络,构建目标检测模块YOLOv3-Mobilenetv2,减少检测算法模型参数,提高检测模块的运行速度;在Mobilenetv2中引入Bottom-up连接,增强多尺度特征图间的信息融合;然后构建基于LSTM的运动模型,解决卡尔曼滤波在非线性系统中产生的预测误差,基于Deepsort跟踪算法,引入LSTM运动模型,形成L-Deepsort跟踪算法;改进L-Deepsort跟踪算法外观匹配策略,提升目标间的关联性;最后融合轻量级目标检测算法YOLOv3-Mobilenetv2与多目标跟踪算法L-Deepsort,形成MYL-Deepsort多车辆跟踪算法,实现多车辆的实时准确跟踪。实验结果表明,该方法在跟踪性能提升的情况下,速度较YOLOv3-Deepsort提高21 frame/s,在TX2平台达到13 frame/s。  相似文献   

16.
针对单目视觉目标检测,提出了一种基于single-stage深度学习的H_SFPN算法。该算法与现有的YOLOv3和CenterNet算法相比,在保证实时性能的条件下,可有效提高小目标检测的准确度。首先设计了一种新的网络架构(backbone),这种架构通过改进的沙漏(Hourglass)网络模型来提取特征图,以便充分利用底层特征的高分辨率以及高层特征的高语义信息。然后在特征图融合阶段提出了基于SFPN的特征图加权融合方法。最后,H_SFPN算法对目标位置和大小的损失函数进行了改进,可有效降低训练误差,并加快收敛速度。由MSCOCO数据集上的实验结果可知,所提H_SFPN算法明显优于Faster-RCNN,YOLOv3以及EfficientDet等现有的主流深度学习目标检测算法,其中对小目标的检测指标AP s最高,达到了32.7。  相似文献   

17.
复杂场景下基于增强YOLOv3的船舶目标检测   总被引:1,自引:0,他引:1  
聂鑫  刘文  吴巍 《计算机应用》2020,40(9):2561-2570
为提升水上交通安全监管的智能化水平,进一步提高基于深度学习的船舶目标检测算法的定位精度和检测准确率,在传统YOLOv3算法基础上,提出用于船舶目标检测的增强YOLOv3算法。首先,在网络预测层引入预测框不确定性回归,以预测边界框的不确定性信息;然后,使用负对数似然函数和改进的二值交叉熵函数重新设计损失函数;其次,针对船舶形状使用K均值聚类算法重新设计先验锚框尺寸并平均分配到对应预测尺度;在网络训练阶段,使用数据增强策略扩充训练样本数量;最后,使用加入高斯软阈值函数的非极大值抑制(NMS)算法对预测框进行后处理。对各种改进方法和不同目标检测算法在真实海事视频监控数据集上进行对比实验。实验结果显示,与传统YOLOv3算法相比,带有预测框不确定性信息的YOLOv3算法的假正样本(FP)数量降低了35.42%,真正样本(TP)数量提高了1.83%,所以提高了准确率;增强YOLOv3算法在船舶图像上的平均准确率均值(mAP)达到87.74%,与传统YOLOv3算法和Faster R-CNN算法相比分别提高了24.12%和23.53%;所提算法的每秒钟检测图像数量达到30.70张,满足实时检测的要求。实验结果表明,所提算法在雾天和低照度等不良天气条件与复杂通航背景下,均能实现船舶目标的高精度稳定实时检测。  相似文献   

18.
聂鑫  刘文  吴巍 《计算机应用》2005,40(9):2561-2570
为提升水上交通安全监管的智能化水平,进一步提高基于深度学习的船舶目标检测算法的定位精度和检测准确率,在传统YOLOv3算法基础上,提出用于船舶目标检测的增强YOLOv3算法。首先,在网络预测层引入预测框不确定性回归,以预测边界框的不确定性信息;然后,使用负对数似然函数和改进的二值交叉熵函数重新设计损失函数;其次,针对船舶形状使用K均值聚类算法重新设计先验锚框尺寸并平均分配到对应预测尺度;在网络训练阶段,使用数据增强策略扩充训练样本数量;最后,使用加入高斯软阈值函数的非极大值抑制(NMS)算法对预测框进行后处理。对各种改进方法和不同目标检测算法在真实海事视频监控数据集上进行对比实验。实验结果显示,与传统YOLOv3算法相比,带有预测框不确定性信息的YOLOv3算法的假正样本(FP)数量降低了35.42%,真正样本(TP)数量提高了1.83%,所以提高了准确率;增强YOLOv3算法在船舶图像上的平均准确率均值(mAP)达到87.74%,与传统YOLOv3算法和Faster R-CNN算法相比分别提高了24.12%和23.53%;所提算法的每秒钟检测图像数量达到30.70张,满足实时检测的要求。实验结果表明,所提算法在雾天和低照度等不良天气条件与复杂通航背景下,均能实现船舶目标的高精度稳定实时检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号