首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
为研究不同连接方式的预制复合墙板填充墙对钢筋混凝土(RC)框架抗震性能的影响,进行了1榀RC纯框架、1榀普通砌块填充墙RC框架及3榀连接方式不同的复合墙板填充墙RC框架的低周反复加载试验,复合墙板填充墙与框架之间的连接方式分为刚性连接、半柔性连接和柔性连接3种。通过试验分析不同连接方式的墙板填充墙对框架承载力、刚度、延性、耗能能力等的影响。试验结果表明:刚性连接复合墙板填充墙能使RC框架的抗侧刚度、水平承载力大幅提高,同时延性变差;柔性连接和半柔性连接的复合墙板填充墙RC框架的抗侧刚度、水平承载力高于砌块填充墙RC框架的,延性好于砌块填充墙RC框架;加载过程中,半柔性连接的复合墙板填充墙RC框架墙板和框架依次破坏,表现出良好的耗能能力。建议工程应用中复合墙板填充墙与框架之间采用柔性连接或半柔性连接构造方式。  相似文献   

2.
为了研究基于新型连接方式下内嵌墙板与钢框架结构的地震协同工作性能和破坏机理,对新型连接方式内嵌墙板钢框架、传统L形卡件连接内嵌墙板钢框架及纯钢框架等3种工况进行了拟静力试验,对比分析了3个试件的破坏模式、滞回曲线、骨架曲线和刚度退化曲线等抗震性能指标。结果表明:内嵌墙板能够提高钢框架的极限承载力、变形能力和刚度,传统L形卡件连接墙板钢框架的抗震承载力是纯框架抗震承载力的1.34倍,新型连接方式墙板钢框架的抗震承载力是传统节点框架抗震承载力的1.42倍。当加载位移为12 mm(层间位移角为1/133)时,采用传统连接的试件中间墙板破坏较为严重且已达到混凝土极限应变,而采用新型连接的试件中间墙板未发现明显损伤,仍处于工作状态。新型连接通过连接节点处的连接件滑动耗能,延缓墙板开裂时间,减轻墙板损伤,增加了内嵌墙板钢框架大震下的耗能储备。  相似文献   

3.
对一榀单跨两层半刚接框架-十字加劲钢板剪力墙结构进行水平反复荷载作用下的抗震试验研究,系统分析结构破坏模式和耗能机理,研究节点刚度与加劲墙体的相互影响效果,得到了承载力,延性,刚度和耗能能力等指标。试验结果表明:该种结构具有良好的延性和耗能性能,安全储备高;节点刚度退化小,内填钢板的设置缓解了节点区自身的延性要求,半钢框架和墙板协同工作良好;加劲肋的设置改善了钢板的实际受力,提高墙体的承载力及刚度,减轻了滞回曲线的捏缩现象,减小钢板噪音及震颤。结构破坏模式为加劲肋屈曲,内填钢板以小区格局部屈曲为主,伴随相关屈曲;框架柱脚及梁柱半刚性连接部位形成塑性铰;试件面内呈弯曲破坏模式,研究为该种结构体系的工程应用和理论分析提供依据。  相似文献   

4.
联肢钢板剪力墙结构是将2片钢板剪力墙通过钢连梁连接形成的抗侧力结构。通过对1榀1/3缩尺的4层联肢弯剪型钢板剪力墙试件进行低周往复加载试验,从滞回曲线、骨架曲线、延性、承载力及刚度退化、耗能能力等方面研究了该结构体系的抗震性能,并且对试件的屈服顺序和变形模式进行了分析。结果表明:联肢钢板剪力墙试件的延性系数达到5.03,承载力退化系数均大于0.96,承载力和刚度退化稳定,等效黏滞阻尼系数达到0.25以上,表明联肢弯剪型钢板剪力墙具有优越的抗震性能。加载过程中,连梁先于墙板发生屈服,墙板先屈曲后屈服,此后柱脚和横梁相继屈服。连梁的引入改变了结构的屈服机制,提高了整体的延性和耗能能力,能够组成多道抗震防线,且试件整体最终也体现出合理的破坏机制。整体侧移曲线呈弯剪变形模式。该试验研究更加贴合实际工程中联肢钢板剪力墙结构的应用情况,为联肢钢板剪力墙结构的进一步研究和应用提供了试验基础。  相似文献   

5.
《Planning》2019,(2)
为研究带装配式金属消能减震复合墙板(metal energy dissipation composite wallboard,MDW)混凝土框架的抗震性能,基于有限元数值分析软件ABAQUS建立了10榀单层单跨带装配式MDW混凝土框架试件的有限元模型,分别研究耗能钢板厚度、墙板厚度及墙板间距等参数对试件抗震性能的影响,并将空框架数值模拟结果与已有相关试验结果进行对比验证,以确定数值仿真分析的正确性。研究结果表明:增加耗能钢板厚度能够明显提高试件的滞回性能、初始刚度、承载力,耗能钢板厚度过大的试件框架梁两端弯矩差值较大;增加墙板厚度,试件的初始刚度略有增加,墙板厚度变化对试件的抗震性能影响较小;随着墙板间距的增加,试件的耗能能力、初始刚度及承载力有所降低,延性略有提高。  相似文献   

6.
FRP连接件是超低能耗预制夹芯保温墙体中的关键构件,其抗拔抗剪性能直接影响了预制夹芯墙体的力学性能。本研究使用ANSYS有限元模拟软件,对超低能耗预制夹芯保温墙体中FRP连接件进行抗拔及抗剪试验模拟,研究直径16 mm、18 mm、20 mm三类FRP连接件试件的力学性能。结果表明:1)FRP连接件抗拔性能较好,试件抗拔性能均满足规范要求,抗拔试验模拟的破坏形式均为混凝土板的劈裂破坏,试件破坏时FRP连接件均完好。2)FRP连接件抗剪性能较差,夹芯墙板内外叶板易出现较大竖向相对位移,抗剪承载力试验中只有当连接件直径达到20 mm时,试件抗剪承载力及内外叶墙体之间的相对位移达到规范要求。  相似文献   

7.
为研究装配式混凝土框架-冷弯薄壁型钢复合墙板(CTSC墙板)结构的抗震性能和破坏机理,对1榀装配式混凝土纯框架和2榀装配式混凝土框架-CTSC墙板结构进行了低周反复荷载试验。通过分析结构破坏模式、荷载-位移曲线、刚度退化特征、延性、耗能机理以及关键部位应变变化规律,探究了CTSC墙板内嵌式连接和外挂式连接对装配式混凝土框架抗震性能的影响。结果表明:CTSC墙板内嵌或外挂连接均安全可靠,可有效地保证地震作用下装配式混凝土框架与CTSC墙板的协同工作;与纯框架相比,采用内嵌和外挂连接形式时结构的水平承载力分别提高28.3%和15.0%,初始刚度分别提高38.4%和16.8%。基于等效拉压杆原理,提出了装配式混凝土框架内嵌CTSC墙板结构的抗侧刚度简化计算式,并验证了计算结果的准确性。  相似文献   

8.
为研究钢框架-预制混凝土抗侧力墙板装配式结构体系(SPW体系)的抗震性能,对2榀钢框架-预制混凝土抗侧力墙板结构足尺试件进行拟静力荷载作用下的试验研究。试验结果表明:该结构体系为一种典型的双重抗侧力体系,加载过程呈现出明显的两阶段性,抗侧力墙板为结构体系的第一道防线,钢框架为结构的第二道防线;基于纤维单元,利用CANNY软件建立SPW体系的有限元模型,在验证模型正确性的基础上,分析了框架柱刚度、框架梁刚度、墙体高宽比和墙体内置型钢含钢率等因素对SPW体系墙抗震性能的影响,分析结果表明:结构体系的塑性耗能性能主要是由抗侧力墙和框架梁端的耗能决定的;随着墙体高宽比的减小,结构的耗能性能和延性变差。增大墙体内置型钢含钢率有助于提高结构的耗能性能。  相似文献   

9.
为研究柔性钢框架外挂再生混凝土墙结构的抗震性能,对2个单层单跨1∶3缩尺的柔性钢框架外挂再生混凝土墙试件及1个纯钢框架试件进行了拟静力试验。通过对有无外挂墙板及不同梁柱节点形式的对比,分析了外挂墙板及梁柱节点刚度对结构的承载力、抗侧刚度、延性及耗能能力的影响,并对结构内力及水平荷载分配进行了分析。结果表明:柔性钢框架设置外挂墙板后,结构承载力提高约19%;梁柱连接节点刚度对结构的抗震性能影响不大,两种连接形式下结构承载力仅相差6%;柔性钢框架外挂再生混凝土墙结构具有良好的延性,平均位移延性系数均大于3,建议与"中震可修"相对应的层间位移角限值取1/80~1/100;结构耗能主要由钢框架提供,设置外挂墙板后,对耗能能力的提高幅度约15%~20%;栓焊混合连接结构中钢框架内力分布均匀,梁柱节点整体性能好;平齐端板连接节点在强震下变形能力强,受压区翼缘局部翘曲;结构水平荷载主要由钢框架承担,外挂墙板承担约20%~30%。  相似文献   

10.
为研究角部连接钢框架 玻璃纤维增强无机板组合墙体的抗震性能,考察人字形斜撑和玻璃纤维增强无机板对钢框架 组合墙体的影响,设计2榀足尺的双层双跨钢框架和2榀足尺的双层双跨组合墙体进行拟静力试验。观察不同形式钢框架和组合墙体在低周往复荷载下的破坏过程及破坏形态,得到了各试件的滞回曲线、骨架曲线、刚度退化曲线、累积耗能、关键部位应变、延性系数等性能指标,对比分析人字形斜撑和玻璃纤维增强无机板对钢框架 组合墙体耗能性能、延性、承载力的影响。试验结果表明:组合墙体抗侧承载力高,刚度大,而变形能力与耗能能力较差;人字形斜撑能有效提高钢框架承载力、延性及耗能能力,但在组合墙体中人字形斜撑作用不明显,且圆钢管人字形斜撑易发生平面外失稳,建议设计时采用平面外刚度大于平面内刚度的H型钢;玻璃纤维增强无机板可以较大程度提高钢框架的抗侧承载力,由于玻璃纤维增强无机板过早开裂破坏,导致其延性降低,刚度退化速度加快,耗能能力变弱。基于已有的侧移刚度公式,对其进行参数修正并给出组合墙体侧移刚度简化计算式,理论值与试验初始抗侧刚度吻合较好,可为后续研究提供理论基础。  相似文献   

11.
提出了一种帽型冷弯薄壁型钢屈曲约束钢板剪力墙结构抗侧力体系。为了研究该帽型冷弯薄壁型钢屈曲约束钢板剪力墙结构的抗震性能,剥离了钢板剪力墙结构抗侧力体系中梁柱框架刚接对体系抗侧力的贡献,从钢板剪力墙中提取出“墙元”,并保证其为纯剪受力状态,设计了5个帽型冷弯薄壁型钢屈曲约束钢板剪力墙墙元试件,对其进行往复剪切荷载下的拟静力试验。结果表明:帽型冷弯薄壁型钢屈曲约束钢板剪力墙结构承载能力稳定,位移延性系数达到7以上,极限位移角达0.03rad,塑性变形能力较强;帽型冷弯薄壁型钢可以阻断内嵌钢板斜向通长拉力带,使钢板约束覆盖区域处于平面剪切受力变形状态,从而提升结构承载力、刚度和耗能能力,充分发挥钢板的材料性能;外贴OSB装饰板材可以满足建筑功能的适用性,同时强化了整体结构的抗震性能。  相似文献   

12.
半刚性连接钢框架-钢板剪力墙结构抗震性能试验研究   总被引:2,自引:1,他引:1  
通过对半刚性连接框架-钢板剪力墙结构在水平反复荷载作用下的试验研究,得到了结构的滞回曲线、延性指标、水平刚度、梁柱应变、转角及各关键部位的变形。从耗能能力、刚度退化、承载力、延性等方面分析该种结构的抗震性能和耗能机理;依据应力分布、梁柱转角研究半刚性节点与钢板剪力墙的相互影响效果;分析结构的内力转换和破坏模式。结果表明:该结构具有良好的延性和耗能性能;半刚性节点在反复荷载作用下没有明显变形,节点刚度退化小,框架和钢板剪力墙协同工作良好;梁柱半刚性连接弱化了结构的整体刚度,框架自身承担的水平荷载有限;破坏模式为内填钢板剪力墙局部撕裂,拉力带作用明显,钢框架柱脚及梁柱半刚性连接部位形成塑性铰,框架整体呈弯曲破坏模式。图12表4参10  相似文献   

13.
为了研究采用钢板焊接连接的带水平接缝预制装配式钢筋混凝土剪力墙的抗震性能,设计了4个装配式钢筋混凝土剪力墙足尺试件并进行低周往复水平荷载试验,研究参数包括连接钢板厚度、侧向钢板设置和轴压比。结果表明:各试件均为压弯破坏,水平承载力在186~288kN之间,极限位移在25.74~29.37mm之间,滞回曲线为饱满的弓形,延性和耗能能力较好,刚度退化较慢;在连接钢板满足强度要求前提下,增大连接钢板厚度、增加侧向钢板对剪力墙的延性、刚度、承载能力和耗能能力影响较小;提高轴压比可以明显提高装配式剪力墙的刚度和承载能力,但会降低其耗能能力。采用ABAQUS有限元软件对装配式剪力墙抗震性能进行分析,所建立的有限元模型可以较好地模拟装配式剪力墙的受力性能。通过对比采用规范公式计算的承载力与试验承载力,表明可以采用JGJ 3—2010《高层建筑混凝土结构技术规程》中的公式计算文中装配式剪力墙的承载力,并给出了连接钢板的计算方法。  相似文献   

14.
对3个单跨两层1∶3比例的方钢管混凝土框架-薄钢板剪力墙试件进行了低周反复荷载试验,研究了十字加劲薄钢板剪力墙的抗震性能,并与方钢管混凝土框架-非加劲薄钢板剪力墙比较。对比了框架梁柱内隔板式节点与穿芯高强螺栓-端板节点对结构性能的影响。得到了方钢管混凝土框架-薄钢板剪力墙的破坏形态、荷载-位移滞回曲线、骨架曲线、特征荷载和位移及抗震性能指标等,分析了结构的破坏特征、延性、耗能能力、承载能力及刚度退化等力学性能。结果表明,方钢管混凝土框架-薄钢板剪力墙具有良好的抗震性能;十字加劲肋限制了薄钢板剪力墙的面外变形,提高了其承载力与耗能能力,但对整体刚度影响较小;穿芯高强螺栓-端板节点提高了结构的承载力与刚度。  相似文献   

15.
借鉴方钢管混凝土柱-钢梁外肋环板节点形式,将非梁柱连接面的柱两侧外肋环板改为竖贴于柱侧的竖向肋板并伸出与梁翼缘焊接,同时设置锚固腹板,形成复式钢管混凝土柱与H形钢梁连接节点。通过7个梁柱组合体试件的低周反复荷载试验,分析各试件的破坏过程及特征,并对试件的滞回性能、承载力、延性、耗能能力和承载力及刚度退化等抗震性能进行研究。研究结果表明:节点的破坏形态基本相同,梁端先屈曲,形成塑性铰;锚固腹板可有效提高节点的承载力和变形能力;竖向肋板外伸长度可提高试件的初始刚度,使梁端塑性铰外移,有效保护节点核心区;试件的滞回曲线呈明显的梭形,具有良好的承载力、延性及耗能能力;试件在整个加载过程中刚度退化现象明显,承载力退化很小,可应用于抗震设防地区。  相似文献   

16.
In this paper, composite shear walls with different encased steel plates (flat, horizontal corrugated, and vertical corrugated) were tested and simulated by Abaqus to investigate the seismic behavior of corrugated steel plate concrete composite shear walls (SPCSWs). The failure characteristics, deformation and energy dissipation capacity, and stiffness and bearing capacity of the structures under low‐frequency cyclic load were analyzed, and indexes of the seismic performance were obtained. The formulas of the shear‐bearing capacity of steel plate concrete composite shear walls are suggested, and the shear‐sharing ratio of each member is obtained. According to the obtained results, corrugated steel plates can bond with concrete well, and the bearing capacity of the vertical corrugated SPCSW are higher than that of the horizontal corrugated SPCSW. Compared with flat SPCSW, corrugated SPCSW has higher initial stiffness and lateral stiffness, better ductility and energy dissipation ability, and the degradation of bearing capacity and stiffness is slower. The shear‐sharing ratio of a steel plate is larger than that of reinforced concrete in the flat SPCSW and the vertical corrugated SPCSW, the shear force shared by steel plate and reinforced concrete in horizontal corrugated SPCSW is basically the same.  相似文献   

17.
半刚性连接钢框架-非加劲钢板剪力墙结构弥补了传统抗弯钢框架侧向刚度不足的缺点,为采用更加经济的半刚性节点提供了可能。为研究不同梁柱连接刚度对双体系结构抗震性能的影响,完成了3个单跨两层不同梁柱连接刚度试件的水平低周往复加载试验研究,系统分析了三者的整体性能和破坏模态,拟从承载力、刚度、延性、耗能、整体性能和节点性能六个方面对双体系的节点刚度与墙体的匹配效果进行评价。结果表明:在半刚性框架内设置钢板墙能较大程度提高结构的极限承载力与侧向刚度;结构具有理想的屈服顺序,内填板在加载初期非常有效。屈服区域延伸至整个墙体时,附加荷载将基本上由边缘构件承担,试件破坏主要由内填板的屈服和框架柱的弯扭失稳控制;节点刚度退化小,且内填板的设置缓解了节点区自身的延性要求,梁柱连接形式对试件的抗侧刚度和整体强度的影响不大,降低连接刚度有利于提高试件延性和耗能能力。  相似文献   

18.
密肋框格防屈曲低屈服点钢板剪力墙是一种新型抗侧力体系,采用力学性能优良的低屈服点钢作为内填墙板,通过密肋框格抑制钢板面外屈曲。为 系统研究其抗震性能,进行了3榀1/3比例单跨两层半试件的低周往复荷载试验。对比分析各试件在循环荷载作用下的承载力、延性、刚度和耗能能力,探究 不同节点刚度和框-墙连接方式的影响,考察三者的破坏形态。试验结果表明:密肋框格防屈曲钢板墙具有稳定的承载力和良好的塑性变形能力,结构初始 侧向刚度大,耗能性能优良。防屈曲密肋框格的设置起到类似两边连接的作用,有效改善了内填板的受力特性,试件的滞回曲线饱满,避免出现“捏缩”现 象。结构具有理想的屈服顺序和较为合理的破坏模式。梁柱节点对试件的抗震性能影响较小,降低连接刚度能够提高结构的延性和耗能。最后将各试件承载 力和初始刚度的理论计算值与试验结果进行对比,二者较为吻合。  相似文献   

19.
带约束拉杆钢板-混凝土组合剪力墙抗震性能试验研究   总被引:1,自引:0,他引:1  
为研究带约束拉杆钢板-混凝土组合剪力墙的抗震性能,制作10个钢板之间采用八螺母螺栓连接的钢板-混凝土组合剪力墙试件并对其进行拟静力试验,研究试件的破坏模式、变形能力及耗能能力,得到试件的滞回曲线、承载力、骨架曲线、刚度退化曲线、位移延性系数以及累计耗能曲线等,分析高宽比、约束拉杆间距、钢板厚度、核心混凝土厚度、轴压比及边缘增设型钢对试件抗震性能的影响。结果表明:钢板之间采用八螺母螺栓连接可行,带约束拉杆钢板-混凝土组合剪力墙抗震性能较好,随高宽比降低、约束拉杆间距减小、钢板厚度增大、核心混凝土增厚及边缘增设型钢,其抗震性能增强;端部增设型钢可显著提高试件承载力;减小约束拉杆间距可显著提高试件的延性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号