首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了研究热轧(高于再结晶温度)过程中CoCrNi中熵合金组织与性能的演变,在不同温度下(900℃和1 100℃)轧制,制备不同厚度的板材。采用X射线衍射仪、金相显微镜、维氏硬度仪和万能试验机分别对板材进行物相组成分析、组织形貌分析以及力学性能分析。研究结果表明:热轧过程中无第二相析出;热轧会使晶粒被压扁、拉长、转动和破碎,形成亚晶粒与板织构,通过动态再结晶过程完成了由树枝晶向等轴晶组织的全部转变,且相同下压量下1 100℃热轧后晶粒尺寸大于900℃热轧后晶粒,说明高温会促进晶粒长大;冷轧CoCrNi合金的显微硬度可达520 HV,900℃或1 100℃热轧其显微硬度不到300 HV,且断后延伸率明显增加,说明热轧可以改善合金内部缺陷,且无明显的加工硬化现象,从而优化其力学性能。  相似文献   

2.
在实验室试制了800 MPa级C-Si-Mn系冷轧双相钢,研究了双相钢的处理工艺,并对所研究钢板进行了力学性能测试和显微组织分析.研究结果表明,随着退火温度的增加,屈服强度和抗拉强度呈逐渐增加的趋势,当退火温度在740~760℃时,增加不太明显;温度高于760℃以后,屈服强度和抗拉强度均有较大幅度的增加;当退火温度达800℃时,屈服强度为490 MPa,抗拉强度达到955 MPa,延伸率为18.0%.  相似文献   

3.
Al—Mg—(Sc)合金退火组织和性能   总被引:3,自引:0,他引:3  
通过金相组织观察、硬度测量、力学性能测试及剥落腐蚀实验,研究了微量Sc对Al-Mg合金显微组织,再结晶温度,力学性能和抗剥落腐蚀性能的影响,研究结果表明:添加微量Sc后,合金的铸态组织显著细化;合金在130℃稳定化退火中硬度基本不下降,在230℃和330℃退火时的硬度下降幅主比未添加Sc的合金在130℃退火时的硬度下降幅度;添加微量Sc后,合金的再结晶起始温度提高到约325℃,而且没有明确的再结晶终了温度,而不含Sc合金的再结晶起始温度为150℃;添加微量Sc后合金从150℃一直到480℃仍然含有大量的变形组织;高温退火后含Sc合金强度较高,在480℃退火后,含Sc合金比不含Sc合金的强度高近70MPa;而且含Sc合金的抗腐蚀能力大幅度提高。  相似文献   

4.
为了分析Cu元素添加对高熵合金显微组织与微观性能的影响,采用真空电弧熔炼炉制备AlCrFeNi2Cu=1.2,1.4,1.6,1.8)高熵合金,并利用扫描电子显微镜、X射线衍射仪、硬度计和压缩试验机对高熵合金的显微组织和力学性能进行测试.结果表明,AlCrFeNi2Cu=1.2,1.4,1.6,1.8)高熵合金主要由简单FCC相(富Fe-Cr相)与BCC相(富Al-Ni相)组成.随着Cu含量的增加,FCC相数量增加,组织中枝晶变得致密,但当x增加到1.8时,晶粒又变得粗大起来.Cu元素主要富集于枝晶间,随着Cu含量的增加,Cu元素呈现聚集趋势并包裹着树枝晶,当x增至1.8时,上述偏聚包裹现象更为明显.高熵合金的压缩性能和硬度均随Cu元素的添加呈现先上升后下降的趋势.当x为1.6时,高熵合金综合性能最佳,其抗压强度、屈服强度、塑性应变量和维氏硬度分别为2 256 MPa、891 MPa、35.6%和372 HV.x(xx(x  相似文献   

5.
利用铜模浇铸的方法制备了CoCrFeNiCu2Snx(摩尔比:x=0,0.2,0.4,0.6,0.8,1.0)高熵合金,研究了Sn的含量对合金组织结构和性能的影响。利用XRD、SEM和EDS分析了高熵合金的相结构、微观组织和成分分布,测试了高熵合金的显微硬度和压缩性能。结果表明,当x=0.2,0.4和0.6时,CoCrFeNiCu2Snx合金的组织形貌没有发生明显的改变,但在合金中形成了一种Sn含量较高、新的FCC3结构相,合金由FCC1、FCC2和FCC3三种面心立方的相构成;当x=0.8和1.0时,合金的形貌依然为枝晶状,但FCC2结构相几乎完全转变为富Sn的FCC3结构相,合金中只有FCC1和FCC3两种结构相。合金的屈服强度和显微硬度随着Sn元素含量的增加而提高,当x=1.0时,合金的屈服强度和显微硬度均达到最高值,分别为1102MPa和391HV。  相似文献   

6.
为了分析Cu元素添加对高熵合金显微组织与微观性能的影响,采用真空电弧熔炼炉制备AlCrFeNi_2Cu_x(x=1. 2,1. 4,1. 6,1. 8)高熵合金,并利用扫描电子显微镜、X射线衍射仪、硬度计和压缩试验机对高熵合金的显微组织和力学性能进行测试.结果表明,AlCrFeNi_2Cu_x(x=1. 2,1. 4,1. 6,1. 8)高熵合金主要由简单FCC相(富Fe-Cr相)与BCC相(富Al-Ni相)组成.随着Cu含量的增加,FCC相数量增加,组织中枝晶变得致密,但当x增加到1. 8时,晶粒又变得粗大起来. Cu元素主要富集于枝晶间,随着Cu含量的增加,Cu元素呈现聚集趋势并包裹着树枝晶,当x增至1. 8时,上述偏聚包裹现象更为明显.高熵合金的压缩性能和硬度均随Cu元素的添加呈现先上升后下降的趋势.当x为1. 6时,高熵合金综合性能最佳,其抗压强度、屈服强度、塑性应变量和维氏硬度分别为2 256 MPa、891 MPa、35. 6%和372 HV.  相似文献   

7.
以一种低成本的800 MPa级C-Si-Mn-Cr系冷轧双相钢为研究对象,对退火温度对其组织和力学性能的影响规律进行了研究,结果表明:实验钢在760℃退火时,再结晶不充分,残留少量变形组织和未溶碳化物。770℃以上退火时再结晶比较充分,组织为铁素体、马氏体和少量贝氏体的复合组织,随着退火温度的升高抗拉强度与延伸率逐渐降低,而屈服强度与屈强比逐渐升高,n值随退火温度的升高先升高后降低在790℃达到最大值。  相似文献   

8.
为了指导600MPa级冷轧双相钢后期热处理工艺的制定,利用金相显微技术和硬度测试对冷轧双相钢的组织再结品演变规律作研究。分析再结晶过程对实验钢组织的影响,以及此过程中硬度的变化,建立静态再结晶体积分数模型。实验表明:对于冷轧双相钢而言,再结晶温度一定,随退火时间增加,组织中再结晶的体积分数急剧增加,直至保持在一平台,达到完伞再结品;保温时间一定情况下,随着退火温度的逐渐升高,组织发生再结晶的速度更快;再结晶模型计算值与实测值吻合较好。  相似文献   

9.
冷变形CrMo钢系列温度退火后的组织与性能   总被引:4,自引:0,他引:4  
对球化退火CrMo钢进行了冷形变、性能测试及TEM组织观察。结果表明:形变量为29.3%的冷变形合金,再结晶温度为600℃;该合金经不同的温度退火,在300℃出现峰值强度,其中高密度位错缠结束集形成的亚晶是产生峰值强度的主要原因:随退火温度提高,发生亚晶合并长大,晶界面积减少,因而使强度降低,塑性提高。  相似文献   

10.
对冷轧压下率为80%、厚1 mm的Ti-IF钢经不同温度退火处理后进行拉伸试验,测量其塑性应变比r值。观察退火试样的显微组织,并利用电子背散射衍射技术(EBSD)对其性能和再结晶织构进行分析。结果表明,冷轧试验钢分别在780、810、840℃退火3 min后,均发生了再结晶;随着退火温度的升高,大多数晶粒尺寸由5-6μm增大到9-10μm;试验钢的r值随退火温度升高而增大;退火钢再结晶织构表现为强烈的{111}织构,主要由{111}〈110〉和{111}〈112〉两类取向晶粒组成。  相似文献   

11.
为了研究热处理对高熵合金组织和力学性能的影响,文中使用真空电弧熔炼制备了铸态AlCoCrFeNi高熵合金并加以800℃和1 050℃退火处理,检测分析了合金的组织和压缩性能。研究结果表明:铸态合金组织为等轴晶形貌,等轴晶内部分为富含Ni和Al元素的树枝晶与富含Cr与Fe元素树枝晶间区域;800℃退火后合金呈现树枝晶形态,树枝晶间由于FCC相和σ相的析出导致调幅分解消失,合金的屈服强度增加、塑性降低;1 050℃退火后合金呈现等轴晶形态,晶内存在部分粗化的调幅分解相,退火处理略微降低了合金的屈服强度、而合金的塑性得到了提高。  相似文献   

12.
以主要元素为Cu80-Al9.8的合金为研究对象,经淬火处理后发现,随着淬火温度的升高,合金中白色的α相组织和黑色颗粒状的k相组织逐渐减少,黑色β相组织逐渐增多;淬火温度升至950℃时,合金中的k相组织已基本消失,合金中有较多的β相组织,α相在β相界面及晶体内析出,且逐渐减少。经常温(10~25℃)拉伸后发现,合金的抗拉强度、屈服强度、延伸率均呈现先升后降的趋势。淬火温度在900℃时,合金的抗拉强度、屈服强度分别为743MPa和410MPa。950℃淬火时,合金的抗拉强度、屈服强度迅速下降至600MPa、340MPa,可见温度为900℃时兼顾了合金的强度和塑性,为适宜的热处理工艺。  相似文献   

13.
轧制对Mg-5Zn-3Nd合金组织及力学性能的影响   总被引:1,自引:0,他引:1  
为研究铸态Mg-5Zn-3Nd镁合金在不同轧制变形量下组织和力学性能的变化,利用小型轧机对铸态Mg-5Zn-3Nd合金进行多道次轧制,并进行了微观组织观察和室温拉伸性能测试.结果表明:该镁合金在常温下可进行多道次轧制,但每道次之间要进行330℃×15min的退火处理,总变形量可达到66%;随总变形量的增加,轧制流线逐渐形成,晶粒的平均尺寸逐渐变小,在许多晶粒内部存在孪晶,在退火过程中发生再结晶.镁合金中Nd主要分布在晶界处的第二相中,并且第二相含Zn较高,材料的强度和塑性均随变形量的增大而增加,当总变形量达到50%以上时,材料的强度和塑性达到极值,抗拉强度为285MPa,屈服强度为279MPa,伸长率为7%.  相似文献   

14.
为改善CoFeNiMn高熵合金的力学性能,文中采用电弧熔炼和铜模喷铸法制备了不同Ti、C含量的CoFeNiMn(TixC100-x)0.25 (x分别为20,30,40,60,70,80)高熵合金。利用X射线衍射仪(XRD)、扫描电镜(SEM)、万能试验机等检测并分析了CoFeNiMn(TixC100-x)0.25合金的显微组织与力学性能。研究结果表明:当x=20时,合金组织呈典型的树枝状,未发现TiC颗粒存在;当x≥30后,合金结构由FCC和TiC两相所组成,TiC颗粒均匀的分布于合金内部;添加Ti、C元素后,CoFeNiMn(TixC100-x)0.25合金仍然保持良好的塑性,随合金中x值的增加,合金的屈服强度在x=20时为302 MPa,x=30时增加至370 MPa, x=80时则减小至204 MP;而合金的硬度则先减小后增加,x=20时硬度为297 HV0.3...  相似文献   

15.
冶炼了稀土铝中间合金,制备了不同稀土含量的高纯铝锭,通过热轧、冷轧和再结晶退火,得到铝箔.采用金相显微观察和X射线衍射分析等方法,研究了稀土元素Ce及其含量对高纯铝热轧、冷轧和再结晶退火后组织和织构的影响.结果表明,随稀土含量增加,再结晶退火后的晶粒细化,稀土的质量分数为0.005 8%时,冷轧铝箔中立方织构最多.  相似文献   

16.
为了研究固溶处理对铸态Mg-2Zn-3Y合金组织和性能的影响,采用光学显微镜、X射线衍射仪、扫描电子显微镜、拉伸试验机和维氏硬度计对固溶处理后的合金进行了组织分析及性能测试.结果表明:Mg-2Zn-3Y合金中含有LPSO相和W相,随着固溶温度的升高,块状LPSO相区域逐渐出现层片状形貌,W相发生球化、粗化和重熔现象,合金的抗拉强度、屈服强度、伸长率和硬度均呈现先升高后降低趋势;经450℃固溶12 h后,合金的强化效果最佳,抗拉强度为187 MPa,屈服强度为107 MPa,伸长率为8.0%,硬度为82.5 HV.  相似文献   

17.
通过不同温度热挤压处理、力学性能测试和组织形貌观察,研究了热挤压处理对AZ31-0.25%Sb镁合金组织与性能的影响.结果表明:热挤压处理可有效提高合金的力学性能,经220 ℃热挤压处理,合金的室温抗拉强度由263 MPa提高到297.6 MPa,屈服强度由96 MPa提高到222.1 MPa,提高幅度达131.4%;热挤压处理提高AZ31-0.5Sb%合金强度的原因是:挤压期间产生了形变强化和发生的动态再结晶,形变产生的高密度位错可提高合金的抗拉强度,而发生动态再结晶形成的细小晶粒可有效提高合金的屈服强度.  相似文献   

18.
研究了热处理工艺对35NCD16合金钢组织和性能的影响,采用金相显微镜、扫描电镜、拉伸实验、硬度实验等设备及实验方法对875℃淬火,550℃、560℃、570℃和580℃不同温度回火后的材料进行组织观察和性能测试,分析其显微组织和力学性能变化规律,从而得出最佳热处理工艺参数.实验结果表明:875℃淬火+高温回火能有效改善35NCD16合金钢的显微组织,在实验温度范围内,35NCD16钢于550℃、560℃发生二次硬化现象,尤以550℃更为显著,此时硬度、抗拉强度、延伸率达到最大值,分别为42.07 HRC、1 309 MPa和15.42%,断口呈微孔聚集型特征,大韧窝中分布着小韧窝;温度超过560℃,则出现过时效现象,580℃时硬度降至35.13 HRC,抗拉强度降至1 048 MPa,延伸率降至12.83%.因此,35NCD16合金钢的最佳热处理工艺为875℃淬火+550℃回火.  相似文献   

19.
为探讨不同淬火温度对核燃料包壳管Zr-4合金力学性能的影响.本文分析了Zr-4合金的显微组织,通过对再结晶退火态的Zr-4合金进行不同温度淬火及回火热处理,在不同热处理状态下对试样进行室温环向拉伸试验,分析对比了试样的拉伸力学性能,并对拉伸后的试样进行断口扫描,分析断裂机理.试验结果表明:包壳管Zr-4合金在980℃淬火后晶粒弦长为145.62μm,相比920℃、950℃的弦长增大,其抗拉强度为740MPa,屈服强度为649MPa.淬火后断口类型属解理脆性断裂.  相似文献   

20.
以Ti-45Al-8Nb-0.2B-0.2W-0.1Y元素粉末为原料,采用真空热压烧结工艺制备了高Nb-TiAl合金。结果表明,烧结温度对合金的显微组织影响显著,当烧结温度高于1 350℃时,可制备出致密度高、晶粒尺寸在20~30μm间的全片层组织高Nb-TiAl合金;提高烧结温度可促进Nb在基体相中的扩散,有助于加强Nb的固溶强化效果;合金的室温力学性能与显微组织密切相关,当烧结温度为1 350℃时,其显微硬度为744.5 HV 0.1/15,抗弯强度为674 MPa,显示出较好的室温力学性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号