首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
《Applied catalysis》1989,46(1):69-87
Samarium, magnesium and manganese oxide and alkali-promoted oxide catalysts have been prepared and tested for the oxidative coupling of methane. The results show that alkali-promoted oxides inhibit total oxidation and have a higher selectivity for the formation of C2 products than the undoped metal oxides. These catalysts have been promoted by injecting pulses of gaseous chlorinated compounds (dichloromethane and chloroform) during the reaction. It has been found that these chlorinated compounds markedly increase the selectivity for the formation of C2 products for all the MnO2-based catalysts and for lithium-doped MgO and Sm2O3 catalysts. The effect is greatest in MnO2-based catalysts. When dichloromethane is added to a pure, unpromoted MnO2 catalyst the selectivity for the formation of carbon dioxide decreases from 82.6% to 4.1% and the selectivity for the formation of C2H4 increases from virtually zero to 56.3%. The highest C2 selectivity observed after promotion of pure MnO2 by dichloromethane is about 93%. Promotion of these pure oxide catalysts by gaseous chlorinated compounds provides an alternative to alkali promotion as a method of inhibiting total oxidation and of increasing ethylene production.  相似文献   

2.
Catalytic activities of the alkali metal salts are discussed based on experimental observations in a fixed bed flow reactor at atmospheric condition and instrumental analysis. LiCl (30 wt%) and NaCl (30 wt%) promoted MgO catalyst showed superior activity to mono alkali metal salts promoted MgO catalysts based on the C2 yield. This suggests that the bialkali metal salts neutralize the nonselective acid sites due to synergistic effect. Moreover, it is estimated that the active sites is O- ions.  相似文献   

3.
The oxidative coupling of methane (OCM) over various alkali metal oxide promoted La2O3/BaCO3 catalysts and the effects of Na2O content on the performance of Na2O–La2O3/BaCO3 catalysts have been studied. It was found that Na2O promoted La2O3/BaCO3 catalysts had the advantages of high CH4 conversion, C2 selectivity and C2H4/C2H6 ratio. Na2O might affect the properties of the catalysts through electronic and geometric effects. The highest C2 yield (19·0–20·6%) was obtained with Na2O–9 wt% La2O3/BaCO3 catalysts of 1·0–3·0% Na2O. The effects of reaction conditions on OCM over 3 wt% Na2O–9 wt% La2O3/BaCO3 catalysts have also been investigated. The catalysts were characterized by BET, TPD and XRD. TPD studies on 3 wt% Na2O–9 wt% La2O3/BaCO3 catalysts demonstrated that CO2, CH4 and O2 could be adsorbed strongly on the catalyst. This might be related to the activation of CH4 and the formation and regeneration of active oxygen species.  相似文献   

4.
Nanothermites (metal oxide/metal) are tremendously exothermic and run with self sustaining oxygen content. Manganese oxide is one of the most effective oxidizers for nanothermite applications. This paper reports on the sustainable fabrication of different nanoscopic forms of colloidal manganese oxides including: MnO2 nanoparticles of 20 nm average particle size and Mn2O3 nanorods of 50 nm diameter and 1 µm length. TEM micrographs demonstrated mono-dispersed particles and rods. XRD diffractograms revealed highly crystalline materials. MnO2 nanoparticles (oxygen content 37 wt%) can offer high oxidizing ability compared with Mn2O3 nanorods (oxygen content 30 wt%). The integration of colloidal particles into energetic matrix can offer enhanced dispersion characteristics; consequently stoichiometric binary mixture of MnO2 and Al nanoparticles were re-dispersed in organic solvent. The integration of developed colloidal nanothermite particles into tri-nitro toluene offered enhanced shock wave strength by 35% using ballistic mortar test. Thanks to nanotechnology which offered sustainable manufacture and subsequent integration of one of the most effective nanothermite particles into highly energetic system.  相似文献   

5.
The goal of this study was to understand the structure–activity relationship for unpromoted and ceria‐promoted MnOx/SiO2 catalysts used in CO oxidation. SiO2 and CeO2‐promoted SiO2 (20% CeO2) were used as supports to prepare MnOx/SiO2 catalysts with various manganese (Mn) loadings. X‐ray diffraction (XRD) and X‐ray photoelectron spectroscopy (XPS) data indicated a higher Mn dispersion on ceria‐promoted than on unpromoted MnOx/SiO2 catalysts. Analysis of the XRD patterns and Mn2p XPS spectra indicated that Mn was present as MnO2 on MnOx/SiO2 with low Mn loadings and ceria‐promoted MnOx/SiO2 catalysts and as mixed MnO2/Mn2O3 on MnOx/SiO2 catalysts with high Mn loadings. Kinetic data obtained for CO oxidation on unpromoted and ceria‐promoted MnOx/SiO2 catalysts are presented and interpreted in correlation with the catalyst surface and bulk structure. A synergistic catalytic effect was observed in the case of the ceria‐promoted MnOx/SiO2 catalysts. Post‐reaction XRD and XPS analysis of catalysts indicated that the presence of ceria precludes formation of the less catalytically active Mn3O4 species from MnO2 deposited initially on the SiO2 support. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
CeO2–nanorod support was synthesized by hydrothermal method and different manganese oxides (MnO, MnO2, and Mn2O3) were impregnated over support by the wet-impregnation forming MnO/CeO2-NR, MnO2/CeO2-NRm and Mn2O3/CeO2-NR. The physico-chemical properties of the as-prepared catalysts were analyzed using x-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) surface area, x-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscope–energy-dispersive x-ray spectroscopy (SEM–EDX), hydrogen-temperature-programmed reduction (H2-TPR), and Raman spectroscopy. These catalysts were further analyzed for NO reduction using NH3 as a reducing gas in the temperature range of 50 to 450°C. The results confirmed that MnO2/CeO2-NR gave the maximum NO conversion (65%) and N2 selectivity (89%) among all catalysts. Further, MnO2/CeO2-NR catalyst was studied for the effect of MnO2 loading and more than 90% NO conversion and N2 selectivity were obtained in the temperature range of 250 to 300°C.  相似文献   

7.
TiO2-supported manganese oxide catalysts were prepared from two different precursors, manganese nitrate (MN) and manganese acetate (MA), and these samples were characterized by BET, XRD, TG/DTA, XPS and FT–IR. The characterization results showed that the MN precursor resulted primarily in MnO2, accompanied with some Mn-nitrate, while the MA precursor caused mainly Mn2O3 species. These two different precursors also led to different surface Mn atom concentrations indicated by XPS and NH3 adsorption. Consequently, the higher low-temperature activity of MnOx/TiO2 from MA precursor was attributed to higher surface Mn concentration and the surface Mn2O3 species.  相似文献   

8.
The catalytic activity, thermal stability and carbon deposition of various modified NiO/γ‐Al2O3 and unmodified NiO/γ‐Al2O3 catalysts were investigated with a flow reactor, XRD, TG and UVRRS analysis. The activity and selectivity of the NiO/γ‐Al2O3 catalyst showed little difference from those of the modified nickel‐based catalysts. However, modification with alkali metal oxide (Li, Na, K) and rare earth metal oxide (La, Ce, Y, Sm) can improve the thermal stability of the NiO/γ‐Al2O3 and enhance its ability to suppress carbon deposition during the partial oxidation of ethane (POE). The carbon deposition contains graphite‐like species that were detected by UVRRS. The nickel‐based catalysts modified by alkali metal oxide and rare earth metal oxide have excellent catalytic activities (C2H6 conversion of ~100%, CO selectivity of ~94%, 7 × 104 l/(kg h), 1123 K), good thermal stability and carbon‐deposition resistance. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
《Catalysis communications》2011,12(15):1193-1199
The Pt–ceria synergy may be described as the dehydrogenation of formate formed on the surface of the partially reducible oxide (PRO), ceria, by Pt across the interface, with H2O participating in the transition state. However, due to the rising costs of rare earth oxides like ceria, replacement by a less expensive partially reducible oxide, like manganese oxide, is desirable. In this contribution, a comparison between Pt/ceria and Pt/manganese oxide catalysts possessing comparable Pt dispersions reveals that there are significant differences and certain similarities in the nature of the two Pt/PRO catalysts. With ceria, partial reduction involves reduction of the oxide surface shell, with Ce3+ at the surface and Ce4+ in the bulk. In the case of manganese oxide, partial reduction results in a mixture of Mn3+ and Mn2+, with Mn2+ located at the surface. With Pt/CeOX, a high density of defect-associated bridging OH groups react with CO to yield a high density of the formate intermediate. With Pt/MnOX, the fraction of reactive OH groups is low and much lower formate band intensities result upon CO adsorption; moreover, there is a greater fraction of OH groups that are essentially unreactive. Thus, much lower CO conversion rates are observed with Pt/MnOX during low temperature water–gas shift. As with ceria, increasing the Pt loading facilitates partial reduction of MnOX to lower temperature, indicating metal–oxide interactions should be taken into account.  相似文献   

10.
《Catalysis communications》2009,10(15):2570-2573
The aerobic oxidation of aromatic alcohol on alkali metal promoted Mn/C catalysts has been investigated. A dramatic improvement of the oxidation activity can be observed when the Mn/C catalyst is modified with potassium ions. Characterizations of Raman and X-ray absorption fine structure (XAFS) evidence that potassium ions induce a large local distortion to Mn–O octahedrons in supported manganese oxides with coexistence of Mn2+ and Mn3+, which has been suggested to be a vital factor to enhance the activation of O2 for the oxidation of benzylic alcohol.  相似文献   

11.
A new facile and cost-effective process involving the solvent-free oxidation of benzyl alcohol using molecular oxygen as oxidant under controlled microwave irradiation has been developed for the production of chlorine-free benzaldehyde. Influence of different catalyst parameters (different manganese oxides and other kinds of transition metal oxides) and reaction conditions (reaction period and temperature) on the process performance has been studied. Under optimized reaction conditions, the MnO2 catalyst showed a superior catalytic performance in the highly selective oxidation of benzyl alcohol as compared to other manganese oxide materials such as MnO, Mn2O3 and Mn3O4. Moreover, a very stable catalytic activity as a function of cycling test was observed for the MnO2 catalyst.  相似文献   

12.
The activities of metal oxide catalysts in propane oxidative dehydrogenation to propene have been studied. The catalysts are M/-Al2O3 (where M is an oxide of Cr, Mn, Zr, Ni, Ba, Y, Dy, Tb, Yb, Ce, Tm, Ho or Pr). Both transition metal oxides (TMO) and rare-earth metal oxides (REO) are found to catalyze the reaction at 350-450 °C, 1 atm and a feed rate of 75 cm3/min of a mixture of C3H8, O2 and He in a molar ratio of 4:1:10. Among the catalysts, Cr-Al-O is found to exhibit the best performance. The selectivity to propene is 41.1% at 350 °C while it is 54.1% at 450 °C. Dy-Al-O has the highest C3H6 selectivity among the REO. At 450 °C, the other catalysts show C3H6 selectivity ranging from 16.2 to 37.7%. In general TMO show higher C3H6 selectivity than REO, which, however, show higher C2H4 selectivity. An attempt is made to correlate propane conversion and selectivity to C3H6 with metal-oxygen bond strength in the catalysts. For the TMO a linear correlation is found between the standard aqueous reduction potential of the metal cation of the respective catalyst and its selectivity to propane at 11% conversion. No such correlation has been found in the case of REO. Analyses of the product distributions suggest that for TMO propane activation the redox mechanism seems to prevail while the REO activate it by adsorbed oxygen.  相似文献   

13.
The effect of the addition of manganese to Cu/SiO2 catalysts for cyclohexanol dehydrogenation reaction was investigated. At reaction temperature of 250 °C, the conversion and the selectivity to cyclohexanone were both increased with the addition of manganese to Cu/SiO2 catalyst. However, as the reaction temperature was further increased, higher loading of manganese in Cu/SiO2 catalyst led to a decrease in the conversion of cyclohexanol. Manganese in Cu/ SiO2 catalyst decreased the reduction temperature of copper oxide, increased the dispersion of copper metal, and decreased the selectivity to cyclohexene. It was found that the dehydration of cyclohexanol to cyclohexene occurred on the intermediate acid sites of catalyst. At high Mn loading, catalyst surface was more enriched with manganese in used catalyst compared to that in freshly calcined or reduced catalyst, which may account for the sharp decrease of the conversion at high temperature of 390 °C. Upon reduction, copper manganate on silica was decomposed into fine particles of copper metal and manganese oxide (Mn3O4).  相似文献   

14.
In the Selective Crystallization and Phase Separation (SCPS) process, manganese oxide is used as an additive to promote the precipitation of perovskite. However, the influence of manganese oxide on the liquid domain of the perovskite primary phase field is still unclear. In the present work, the liquid-perovskite equilibrium with the addition of 0–15 wt% Mn3O4 was experimentally determined using a high-temperature isothermal equilibration-quenching technique, combined with X-Ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy (SEM-EDS). It was confirmed that manganese was mainly existed as Mn2+ and Mn3+ in the molten phase, whereas titanium existed as Ti4+. Within the composition range of the present study, the 1400 °C liquid compositions varying from 0 wt% to 15 wt% Mn3O4 overlapped significantly, mainly located at w (CaO)/w (SiO2) ratios between 0.9 and 1.1. The isotherms simulated by FactSage, as well as the data from the literature, generally agreed well with the present experimental results. The calculated 1400 °C isotherms at different Mn3O4 levels indicated that perovskite precipitation by manganese oxide was mainly promoted by increasing the Mn3O4 concentration to expand the primary phase field of perovskite toward both higher and lower TiO2 content areas.  相似文献   

15.
Alkali metal (viz. Li, Na, K, Rb and Cs) promoted MgO catalysts (with an alkali metal/Mg ratio of 0·1) calcined at 750°C have been compared for their surface properties (viz. surface area, morphology, acidity and acid strength distribution, basicity and base strength distribution, etc.) and catalytic activity/selectivity in the oxidative coupling of methane (OCM) to C2-hydrocarbons at different temperatures (700–750°C), CH4/O2 ratios (4·0 and 8·0) in feed, and space velocities (10320 cm3 g−1 h−1). The surface and catalytic properties of alkali metal promoted MgO catalysts are found to be strongly influenced by the alkali metal promoter and the calcination temperature of the catalysts. A close relationship between the surface density of strong basic sites and the rate of C2-hydrocarbons formation per unit surface area of the catalysts has been observed. Among the catalysts calcined at 750°C, the best performance in the OCM is shown by Li–MgO (at 750°C). © 1997 SCI.  相似文献   

16.
X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses have been used to characterize the structure of a La2O3-promoted MnOx/SiO2 catalyst, before and after its utilization in the oxidative dehydrogenation of ethylbenzene (EB). MnOx/SiO2 and MnOx/La2O3/SiO2 catalysts were prepared by pore volume impregnation, using aqueous solutions of (i) La3+-nitrate at an atomic ratio of La/Si = 0.08, and (ii) Mn2+-nitrate at an atomic ratio of Mn/Si = 0.10, followed by drying and calcination at 500°C in air. XRD data show no diffraction patterns specific to MnOx on the La2O3-promoted MnOx/SiO2 catalyst, after calcination. Thus, the presence of La2O3 apparently favors the dispersion of manganese oxides during calcination, presumably by forming mixed Mn-La oxides. On the fresh promoted and unpromoted catalysts, after calcination, XRD and XPS analyses indicated that Mn was present mostly as MnO2 and Mn2O3. In the used catalyst, Mn from the unpromoted catalyst degenerated from Mn4+ to Mn2+, resulting in formation of Mn3O4 species, whereas in the case of La2O3-promoted catalyst Mn remained well dispersed as MnO2 and Mn2O3. It appears that La2O3 precludes the formation of Mn3O4 during the EB dehydrogenation, conserving Mn structure and oxidation state. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
NO reduction with propylene over Mn2O3, spinel Ni–Ga oxide and their mechanical mixtures has been investigated. Mn2O3 has no activity to NO reduction, but has a high activity for NO oxidation to NO2. Spinel Ni–Ga oxide showed an apparent activity to NO reduction only at temperatures above 400°C. Mixing of Mn2O3 to the Ni–Ga oxide resulted in a significant enhancement of NO reduction in the temperature range of 250–450°C. The optimal Mn2O3 content in the mixture catalyst was about 10–20 wt%. It is suggested that the synergetic effect of Mn2O3 and Ni–Ga oxide plays an important role in the catalysis of NO reduction. The Ni–Ga oxide and Mn2O3 mixture catalyst is superior to Pt/Al2O3 and Cu-ZSM-5 by showing a higher NO reduction conversion, resistance to water and negligible harmful by-product formation. Other lower hydrocarbons C2H4, C2H6 and C3H8 also give a maximum NO reduction conversion as high as 50%. The difference from using C3H6 is that the temperature at the maximum NO reduction is higher than it is with C3H6. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Iron oxide red (IOR) is a kind of byproduct from spray pyrolysis treatment process of pickling waste liquid. In this project, manganese oxide and manganese cerium co-oxide were loaded onto the surface of IORto prepare IOR supported manganese oxide (Mnx/IOR) and IOR supported manganese-cerium co-oxide (Mnx-Cey/IOR) catalysts by a simple combustion method. Low temperature NH3-selective catalytic reduction (NH3-SCR) denitrification properties of the synthetic catalysts were studied. XRD, SEM, EDS, TEM, BET, XPS, H2-TPR and NH3-TPD were used to characterize the physiochemical properties of the catalysts. The results show that during the combustion process for preparing Mnx/IOR catalyst, MnOx, almost all in amorphous phase, can be well distributed on the surface of the IOR carrier. The NOx conversions of Mnx/IOR catalyst gradually increase with the increase of MnOx loading amount within a specific working temperature range (<200 °C). When MnOx loading amount x is 0.43, the NOx conversion is up to 85% at most. The low temperature NH3-SCR activity of Mnx/IOR catalyst can be enhanced remarkably by introducing cerium. The NOx conversions of Mn0.43-Cey/IOR catalyst at the operating temperature range (<200 °C) increase steadily with the cerium adding amount increasing. All the Mn0.43-Cey/IOR catalysts show excellent denitrification efficiency (more than 90%) at about 160 °C. Compared with Mn0.43/IOR catalyst, Mn0.43-Ce0.1/IOR shows excellent denitrification performance and application prospect because of its higher manganese valence state, enhanced redox capacity, larger specific surface area, and significantly improved surface acidity and anti-SO2 poisoning ability.  相似文献   

19.
Synthesis of Biodiesel from Canola Oil Using Heterogeneous Base Catalyst   总被引:1,自引:0,他引:1  
A series of alkali metal (Li, Na, K) promoted alkali earth oxides (CaO, BaO, MgO), as well as K2CO3 supported on alumina (Al2O3), were prepared and used as catalysts for transesterification of canola oil with methanol. Four catalysts such as K2CO3/Al2O3 and alkali metal (Li, Na, K) promoted BaO were effective for transesterification with >85 wt% of methyl esters. ICP-MS analysis revealed that leaching of barium in ester phase was too high (~1,000 ppm) when BaO based catalysts were used. As barium is highly toxic, these catalysts were not used further for transesterification of canola oil. Optimization of reaction conditions such as molar ratio of alcohol to oil (6:1–12:1), reaction temperature (40–60 °C) and catalyst loading (1–3 wt%) was performed for most efficient and environmentally friendly K2CO3/Al2O3 catalyst to maximize ester yield using response surface methodology (RSM). The RSM suggested that a molar ratio of alcohol to oil 11.48:1, a reaction temperature of 60 °C, and catalyst loading 3.16 wt% were optimum for the production of ester from canola oil. The predicted value of ester yield was 96.3 wt% in 2 h, which was in agreement with the experimental results within 1.28%.  相似文献   

20.
A series of alkali metals (Li, Na, K and Cs) promoted alumina-supported palladium catalysts were prepared by a wet impregnation method and characterized by X-ray diffraction (XRD) and CO chemisorption measurements. The samples were tested for the gas phase hydrogenation of ortho-chloronitrobenzene (O-CNB) to ortho-chloroaniline (O-CAN) in a fixed-bed micro reactor at 250 °C under normal atmospheric pressure. The promoted-Pd/Al2O3 catalysts show higher conversion for O-CNB and the hydrogenation activity of O-CNB per site decreases with the increasing ionic radius of the alkali metal promoter ions. However, the selectivity for O-CAN remains more or less the same in both unpromoted and promoted catalysts and also irrespective of the nature of the alkali metal promoter ions used for promotion of alumina support. Despite, similar activity and selectivity observed between Li- and Na-promoted Pd/Al2O3 catalysts, the Na-promoted showed higher resistance for coke formation than a Li-promoted catalyst. The increase in the intrinsic activity of palladium site on alkali promotion has been attributed to the increase in hydrogenation activity over promoted catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号