首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Due to the complexity of proteome samples, only a portion of peptides and thus proteins can be identified in a single LC-MS/MS analysis in current shotgun proteomics methodologies. It has been shown that replicate runs can be used to improve the comprehensiveness of the proteome analysis; however, high-intensity peptides tend to be analyzed repeatedly in different runs, thus reducing the chance of identifying low-intensity peptides. In contrast to commonly used online ESI-MS, offline MALDI decouples the separation from MS acquisition, thus allowing in-depth selection for specific precursor ions. Accordingly, we extended a strategy for offline LC-MALDI MS/MS analysis using a precursor ion exclusion list consisting of all identified peptides in preceding runs. The exclusion list eliminated redundant MS/MS acquisitions in subsequent runs, thus reducing MALDI sample depletion and allowing identification of a larger number of peptide identifications in the cumulative dataset. In the analysis of the digest of an Escherichia coli lysate, the exclusion list strategy resulted in a 25% increase in the number of unique peptide identifications in the second run, in contrast to simply pooling MS/MS data from two replicate runs. To reduce the increased LC analysis time for repeat runs, a four-column multiplexed LC system was developed to carry out separation simultaneously. The multiplexed LC-MALDI MS provides a high-throughput platform to utilize the exclusion list strategy in proteome analysis.  相似文献   

2.
We investigated and compared three approaches for shotgun protein identification by combining MS and MS/MS information using LTQ-Orbitrap high mass accuracy data. In the first approach, we employed a unique mass identifier method where MS peaks matched to peptides predicted from proteins identified from an MS/MS database search are first subtracted before using the MS peaks as unique mass identifiers for protein identification. In the second method, we used an accurate mass and time tag method by building a potential mass and retention time database from previous MudPIT analyses. For the third method, we used a peptide mass fingerprinting-like approach in combination with a randomized database for protein identification. We show that we can improve protein identification sensitivity for low-abundance proteins by combining MS and MS/MS information. Furthermore, "one-hit wonders" from MS/MS database searching can be further substantiated by MS information and the approach improves the identification of low-abundance proteins. The advantages and disadvantages for the three approaches are then discussed.  相似文献   

3.
The large-scale identification of proteins from proteomes of complex organisms, and the availability of various types of protein and DNA databases, increasingly require the additional information provided by tandem mass spectrometry. HPLC and microLC coupled to ESI-MS/MS presently dominate the field of protein identification by tandem mass spectrometry and database searching. The analysis of protein digests is typically performed using HPLC or LC columns with 50-100-microm diameters, requiring the delivery of solvent gradients at low to mid nanoliter per minute flow rates. This has been typically achieved using expensive generic HPLC pumping systems for the delivery of microliter per minute gradients that were either flow-split or sampled. Here we present an alternative system for the delivery of nanoliter per minute gradients. The inexpensive nanoflow gradient generator (etagrad) described here can be modulated to reproducibly deliver selected gradients. The performance of the etagrad on-line with a microLC-ESI-MS/MS system has been demonstrated for the identification of standard protein digests. Moreover, the performance of the etagrad-microLC-ESI-MS/MS system, with protein prefractionation by IPG isoelectric focusing, was also evaluated for rapid study of yeast and human proteomes.  相似文献   

4.
We describe an integrated approach for automating protein analysis of bacterial cell extracts. The method uses electrospray LC/MS to generate chromatographic profiles of proteins present in an extract, along with a software program that automates the data analysis. The software program, Retana, automates the sequential summing, centroiding, and deconvolution of multiply charged proteins present in consecutive scans of the LC/MS analysis. This procedure generates a concise, single spectrum of proteins present in the extract, along with their retention time and relative abundance. A comparison of the method with "whole cell" MALDI analysis demonstrates improved mass resolution and mass accuracy, along with the appearance of a greater number of proteins. Additionally, it is possible to compare protein expression among strains of bacteria by normalizing the relative abundance of similar proteins in each analysis.  相似文献   

5.
A new algorithm, sequence-specific retention calculator, was developed to predict retention time of tryptic peptides during RP HPLC fractionation on C18, 300-A pore size columns. Correlations of up to approximately 0.98 R2 value were obtained for a test library of approximately 2000 peptides and approximately 0.95-0.97 for a variety of real samples. The algorithm was applied in conjunction with an exclusion protocol based on mass (15 ppm tolerance) and retention time (2-min tolerance for 0.66% acetonitrile/min gradient), MART criteria to significantly reduce the instrument time required for complete MS/MS analysis of a digest separated by RP HPLC. This was confirmed by reanalyzing the set of HPLC-MALDI MS/MS data with no loss in protein identifications, despite the number of virtually executed MS/MS analyses being decreased by 57%.  相似文献   

6.
A method is developed to integrate a protein separation by monolithic capillary reversed-phase high-performance liquid chromatography to on-probe tryptic digestion for subsequent analyses by MALDI-TOF MS and MALDI-TOF/TOF MS. The method provides a means of directly interfacing separations to MALDI-MS, reducing the amount of time required for traditional procedures involving in-solution enzymatic digestion and sample cleanup prior to MALDI-MS analysis. When used with pI-based fractionation as a first dimension, it provides a means of analyzing complex mixtures of proteins with minimal sample handling and cleanup. The use of monolithic capillary columns sufficiently resolved intact proteins so that peptide mass fingerprinting analysis by MALDI-TOF MS resulted in the identification of close to 40 unique proteins from 120 ng of sample obtained from a prefractionated MCF10 cell line at pH 6.34, where the identifications of several of these proteins were also confirmed by intact MW and tandem mass spectrometric analysis. The reproducibility of this method has been demonstrated to be sufficient for the purpose of protein identifications. Experimental values of protein intact MW are obtained and compared to that expected for each protein identified.  相似文献   

7.
Protein phosphorylation is one of the most important known posttranslational modifications. Tandem mass spectrometry has become an important tool for mapping out the phosphorylation sites. However, when a peptide generated from the enzymatic or chemical digestion of a phosphoprotein is highly phosphorylated or contains many potential phosphorylation residues, phosphorylation site assignment becomes difficult. Separation and enrichment of phosphopeptides from a digest mixture is desirable and often a critical step for MS/MS-based site determination. In this work, we present a novel open tubular immobilized metal ion affinity chromatography (OT-IMAC) method, which is found to be more effective and reproducible for phosphopeptide enrichment, compared to a commonly used commercial product, Ziptip from Millipore. A strategy based on a combination of OT-IMAC, sequential dual-enzyme digestion, and matrix-assisted laser desorption/ionization (MALDI) quadrupole time-of-flight tandem mass spectrometry for phosphoprotein characterization is presented. It is shown that MALDI MS/MS with collision-induced dissociation can be very effective in generating fragment ion spectra containing rich structural information, which enables the identification of phosphorylation sites even from highly phosphorylated peptides. The applicability of this method for real world applications is demonstrated in the characterization and identification of phosphorylation sites of a Na(+)/H(+) exchanger fusion protein, His182, which was phosphorylated in vitro using the kinase Erk2.  相似文献   

8.
With the increasing availability of de novo sequencing algorithms for interpreting high-mass accuracy tandem mass spectrometry (MS/MS) data, there is a growing need for programs that accurately identify proteins from de novo sequencing results. De novo sequences derived from tandem mass spectra of peptides often contain ambiguous regions where the exact amino acid order cannot be determined. One problem this poses for sequence alignment algorithms is the difficulty in distinguishing discrepancies due to de novo sequencing errors from actual genomic sequence variation and posttranslational modifications. We present a novel, mass-based approach to sequence alignment, implemented as a program called OpenSea, to resolve these problems. In this approach, de novo and database sequences are interpreted as masses of residues, and the masses, rather than the amino acid codes, are compared. To provide further flexibility, the masses can be aligned in groups, which can resolve many de novo sequencing errors. The performance of OpenSea was tested with three types of data: a mixture of known proteins, a mixture of unknown proteins that commonly contain sequence variations, and a mixture of posttranslationally modified known proteins. In all three cases, we demonstrate that OpenSea can identify more peptides and proteins than commonly used database-searching programs (SEQUEST and ProteinLynx) while accurately locating sequence variation sites and unanticipated posttranslational modifications in a high-throughput environment.  相似文献   

9.
We present an MS/MS database search algorithm with the following novel features: (1) a novel protein database structure containing extensive preindexing and (2) zone modification searching, which enables the rapid discovery of protein modifications of known (i.e., user-specified) and unanticipated delta masses. All of these features are implemented in Interrogator, the search engine that runs behind the Pro ID, Pro ICAT, and Pro QUANT software products. Speed benchmarks demonstrate that our modification-tolerant database search algorithm is 100-fold faster than traditional database search algorithms when used for comprehensive searches for a broad variety of modification species. The ability to rapidly search for a large variety of known as well as unanticipated modifications allows a significantly greater percentage of MS/MS scans to be identified. We demonstrate this with an example in which, out of a total of 473 identified MS/MS scans, 315 of these scans correspond to unmodified peptides, while 158 scans correspond to a wide variety of modified peptides. In addition, we provide specific examples where the ability to search for unanticipated modifications allows the scientist to discover: unexpected modifications that have biological significance; amino acid mutations; salt-adducted peptides in a sample that has nominally been desalted; peptides arising from nontryptic cleavage in a sample that has nominally been digested using trypsin; other unintended consequences of sample handling procedures.  相似文献   

10.
ESI (electrospray ionization) MS and tandem mass spectrometry (MS/MS) were used for the analysis of single nucleotide polymorphisms (SNPs) and more complex genetic variations. Double-stranded (ds) PCR products were studied. PCR products of the proline [5'-x(G17)-x(C38)x-3'] and arginine variants [(5'-x(Gl7)-x(G38)x-3'] of the p53 gene are distinguished by an SNP (cytosine or guanine) and were discriminated using both quadrupole and quadrupole ion trap MS analysis. A 69 bp arginine mutant PCR product [5'-x(C17)-x(G38)x-3'] with a negating switch has the same mass as the proline variant but was readily distinguishable on ion trap MS/MS analysis; fragments containing the mutation site, but not the polymorphism, were identified. The 69 bp PCR products were restriction-enzyme-digested, to create 43 bp fragments. ESI quadrupole ion trap MS/MS analysis of the 43 bp product-ion spectra readily demonstrated both polymorphism and negating switch sites. MS and MS/MS are powerful and complementary techniques for analysis of DNA. MS can readily distinguish SNPs but MS/MS is required to differentiate isomeric PCR products (same nucleotide composition but different sequence).  相似文献   

11.
Craft D  Li L 《Analytical chemistry》2005,77(8):2649-2655
An automated system has been developed for protein identification using mass spectrometry that incorporates sample cleanup, preconcentration, and protein digestion in a single stage. The procedure involves the adsorption of a protein or a protein mixture from solution onto a hydrophobic medium that is contained within a microcolumn. The protein is digested while still bound to the hydrophobic support. The peptides are then eluted from surface digestion to an electrospray ionization mass spectrometer for detection and sequencing. The entire system is fully automated wherein the mass spectrometer is collecting data continuously. We demonstrate that this system is capable of identifying standard protein samples at concentrations down to 100 nM. Further development of this technique may offer a potential solution for proteomics applications that require unattended operation, such as on-line monitoring and identification of microorganisms on the basis of the detection of their protein biomarkers.  相似文献   

12.
The castor bean plant (Ricinus communis) is used in large quantities for oil production and is also a common ornamental garden plant. However, the beans contain 1-3% of the highly toxic protein ricin, a type II ribosome-inactivating protein that is covered by the Chemical Weapons Convention, and there have been a number of reports concerning the use, or alleged use, of the toxin in terrorist and criminal activities. In the study reported here, we investigated the potential utility of organic solvent-assisted trypsin digestion of crude extracts containing the closely related toxins ricin or abrin to prepare samples for peptide analysis by liquid chromatography combined with electrospray ionization quadrupole time-of-flight tandem mass spectrometry. Diagnostic tryptic fragments of the toxins were detected and unambiguously identified by this procedure. The sample preparation protocol substantially reduces the sample preparation time, from overnight to an hour, and thus greatly reduces the total time required for analyses, to less than 2 h. Furthermore, the reported procedure leaves the disulfide bonds in the protein intact. This is highly relevant in the context of the Chemical Weapons Convention, since the disulfide bond connecting the two chains of ricin indicates the presence of an intact toxin and provides additional forensic evidence for the analytical results.  相似文献   

13.
Microperoxidase-11 (MP-11) was first soft landed onto the gold surface of a screen-printed electrode. Intact protein deposition was verified by time-of-flight secondary ion mass spectrometry. The coupling of soft landing with electrochemical techniques allowed unique information to be obtained about the deposition features. A full characterization of the direct electron-transfer properties was performed by modeling data obtained from cyclic voltammetry experiments; calculated values of kinetic electron-transfer constant, formal redox potential, and reorganization energy allow us to hypothesize the mechanism involved in soft landing immobilization and demonstrate the different conformation of the enzyme deposited from two different charged species. The strong interaction between MP-11 and the gold surface and long-term stability of the functionalized electrode characterizes the peculiar features of this procedure, which enhance its power with respect to the existing immobilization procedure and ensure its suitability for those practical applications that could benefit from an unmediated bridgeless bioeletrochemical electron transfer (e.g., biosensor transducers or electrode elements in biofuel cells).  相似文献   

14.
LC-MSn has become a popular option for high-throughput quantitative proteomics, thanks to the availability of stable-isotope labeling reagents. However, the vast quantity of data generated from LC-MSn continues to make the postacquisition quantification analyses challenging, especially in experiments involving multiple samples per experimental condition. To facilitate data analysis, we developed a computer program, QUIL, for automated protein quantification. QUIL accounts for the dynamic nature of spectral background and subtracts this background accordingly during ion chromatogram reconstruction. For elution profile identification, QUIL minimizes the inclusion of coeluted neighbor peaks, yet tolerates imperfect peak shapes. Outlier-resistant methods have been implemented for better protein ratio estimation. The utility of QUIL was validated by quantitative analyses of a standard protein as well as complex protein mixtures, which were labeled with cICAT or 18O and analyzed using LCQ, LTQ, or FT-ICR instruments. For samples that no prior knowledge of relative protein quantities was available, Western blotting was performed for confirmation. For the standard protein, the coefficient of variation (CV) of peptide ratio estimation was 6%. For complex mixtures, the median CV for protein ratio calculations was less than 10%. Computed protein abundance ratios exhibited a relatively high degree of correlation with those obtained from Western blot analyses. Compared with a widely used commercial software tool, QUIL showed improvement in ion chromatogram construction and peak integration and significantly reduced relative errors in abundance ratio assessment.  相似文献   

15.
Multidimensional separation is one of the most successful approaches for proteomics studies that deal with complex samples. We have developed an automated ultra-high-pressure multidimensional liquid chromatography system that operates up to approximately 20 kpsi to improve separations and increase protein coverage from limited amount of samples. The reversed-phase gradient is operated in the constant-flow mode opposed to the constant-pressure mode, which is typical of previous ultra-high-pressure systems. In contrast to constant-pressure systems, the gradient shape is fully controllable and can be optimized for the type of samples to be run. The system also features fast sample loading/desalting using a vented column approach to improve sample throughput. This approach was validated on a soluble fraction from yeast lysate where we achieved approximately 30% more protein identifications using a 60-cm-long triphasic capillary column than with our traditional approach. Advantages of the use of a relatively long reversed-phase column (approximately 50 cm) for MudPIT-type experiments are also discussed.  相似文献   

16.
A novel MS/MS-based analysis strategy using isotopomer labels, referred to as "tandem mass tags" (TMTs), for the accurate quantification of peptides and proteins is described. The new tags are designed to ensure that identical peptides labeled with different TMTs exactly comigrate in all separations. The tags require novel methods of quantification analysis using tandem mass spectrometry. The new tags and analysis methods allow peptides from different samples to be identified by their relative abundance with greater ease and accuracy than other methods. The new TMTs permit simultaneous determination of both the identity and relative abundances of peptide pairs using a collision induced dissociation (CID)-based analysis method. Relative abundance measurements made in the MS/MS mode using the new tags are accurate and sensitive. Compared to MS-mode measurements, a very high signal-to-noise ratio is achieved with MS/MS based detection. The new tags should be applicable to a wide variety of peptide isolation methods.  相似文献   

17.
An electrophoretic method has been developed for the extraction of peptides following in-gel digests of SDS-PAGE separated proteins. During electroextraction, the peptides are trapped on a strong cation-exchange microcartridge, before analysis by capillary LC--ESI-tandem mass spectrometry. The spectra obtained by tandem mass spectrometry are searched directly against a protein database for identification of the protein from which the peptide originated. By minimizing surface exposure of the peptides during electroextraction, a reduction of the detection limits for protein identification is realized. The performance of the peptide electroextraction was compared directly with the standard extraction method for in-gel protein digests, using a standard dilution series of phosphorylase B and carbonic anhydrase, separated by SDS-PAGE. The lowest gel loading in which phosphorylase B was identified using the standard extraction method was 2.5 ng or 25 fmol, and the lowest gel loading in which phosphorylase B was identified using electroextraction was 1.25 ng or 12.5 fmol. The design of the microextraction cartridge allows for direct interfacing with capillary LC, which is crucial for maintaining low detection limits. Furthermore, this method can be used for high-throughput proteomics since it can be easily multiplexed and requires only voltage control and low pressures (approximately 15 psi) for operation. We believe that peptide electroextraction is a significant advance for identification of proteins separated by one-dimensional or two-dimensional gel electrophoresis, as it can be easily automated and requires less protein than conventional methods.  相似文献   

18.
It remains an open question as to whether experiments involving collision-induced dissociation (CID) can provide a viable approach for monitoring spatially resolved deuteration levels in electrosprayed polypeptide ions. A number of laboratories reported the successful application of CID following solution-phase H/D exchange (HDX), whereas others found that H/D scrambling precluded site-specific measurements. The aim of the current work is to help clarify the general feasibility of HDX-CID methods, using a 22-residue zinc-bound protein domain (Zn-ZBD) as model system. Metal binding in Zn-ZBD should confer structural rigidity, and the presence of several basic residues should sequester mobile charge carriers in the gas phase. Both of these factors were expected to suppress the extent of scrambling. HDX was carried out by employing rapid on-line mixing, thereby mimicking conditions typically encountered in kinetic pulse-labeling studies. Quadrupole time-of-flight MS/MS of pulse-labeled Zn-ZBD provides high sequence coverage. However, the measured fragment deuteration levels do not correlate with the known H-bonding pattern of Zn-ZBD, suggesting the occurrence of extensive scrambling. Instead of showing a uniform distribution, the fragment ions reveal a distinct nonrandom pattern of deuteration levels. In the absence of prior information, these data could erroneously be ascribed to the presence of protected sites. However, the observed patterns clearly originate from other factors; possibly they are caused by modulations of the amide CID efficiency by kinetic isotope effects. It is concluded that scrambling does not represent the only conceptual problem in HDX-CID studies and that control experiments on uniformly labeled samples are essential for ruling out interpretation artifacts.  相似文献   

19.
Fluorescent protein labeling has been an indispensable tool in many applications of biochemical, biophysical, and cell biological research. Although detailed information about the labeling stoichiometry and exact location of the label is often not necessary, for other purposes, this information is crucial. We have studied the potential of top-down electrospray ionization (ESI)-15T Fourier transform ion cyclotron resonance (FTICR) mass spectrometry to study the degree and positioning of fluorescent labeling. For this purpose, we have labeled the Cu-protein azurin with the fluorescent label ATTO 655-N-hydroxysuccinimide(NHS)-ester and fractionated the sample using anion exchange chromatography. Subsequently, individual fractions were analyzed by ESI-15T FTICR to determine the labeling stoichiometry, followed by top-down MS fragmentation, to locate the position of the label. Results showed that, upon labeling with ATTO 655-NHS, multiple different species of either singly or doubly labeled azurin were formed. Top-down fragmentation of different species, either with or without the copper, resulted in a sequence coverage of approximately 50%. Different primary amine groups were found to be (potential) labeling sites, and Lys-122 was identified as the major labeling attachment site. In conclusion, we have demonstrated that anion exchange chromatography in combination with ultrahigh resolution 15T ESI-FTICR top-down mass spectrometry is a valuable tool for measuring fluorescent labeling efficiency and specificity.  相似文献   

20.
We describe the impact of advances in mass measurement accuracy, +/- 10 ppm (internally calibrated), on protein identification experiments. This capability was brought about by delayed extraction techniques used in conjunction with matrix-assisted laser desorption ionization (MALDI) on a reflectron time-of-flight (TOF) mass spectrometer. This work explores the advantage of using accurate mass measurement (and thus constraint on the possible elemental composition of components in a protein digest) in strategies for searching protein, gene, and EST databases that employ (a) mass values alone, (b) fragment-ion tagging derived from MS/MS spectra, and (c) de novo interpretation of MS/MS spectra. Significant improvement in the discriminating power of database searches has been found using only molecular weight values (i.e., measured mass) of > 10 peptide masses. When MALDI-TOF instruments are able to achieve the +/- 0.5-5 ppm mass accuracy necessary to distinguish peptide elemental compositions, it is possible to match homologous proteins having > 70% sequence identity to the protein being analyzed. The combination of a +/- 10 ppm measured parent mass of a single tryptic peptide and the near-complete amino acid (AA) composition information from immonium ions generated by MS/MS is capable of tagging a peptide in a database because only a few sequence permutations > 11 AA's in length for an AA composition can ever be found in a proteome. De novo interpretation of peptide MS/MS spectra may be accomplished by altering our MS-Tag program to replace an entire database with calculation of only the sequence permutations possible from the accurate parent mass and immonium ion limited AA compositions. A hybrid strategy is employed using de novo MS/MS interpretation followed by text-based sequence similarity searching of a database.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号