首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The airside performance of fin-and-tube heat exchangers having slit geometry is experimentally investigated in this study. A total of 12 samples were tested and compared. Effects of fin pitch and the number of tube row were examined. The test results indicated that the heat transfer performance increase with decrease of fin pitch for N=1. However, for N4, the effect of fin pitch on the heat transfer performance is reversed. In addition to the effect of fin pitch, the heat transfer performance decrease with increase of the number of tube row and the friction factors are relatively independent of the number of tube row. Based on the present test results and those from previous investigations, a general correlation is proposed to describe the airside performance of the slit fin configuration, the mean deviations of the proposed heat transfer and friction correlation are 5.5 and 3.8%, respectively.  相似文献   

3.
This paper presents the heat transfer characteristics obtained from an experimental investigation on flow boiling of n-pentane across a horizontal tube bundle. The tubes are plain with an outside diameter of 19.05 mm and the bundle arrangement is inverse staggered with a pitch to diameter ratio of 1.33. The test conditions consist of reduced pressure between 0.006 and 0.015, mass velocity from 14 to 44 kg/m2s, heat flux up to 60 kW/m2 and vapor quality up to 60%. The convective evaporation is found to have a significant effect on the heat transfer coefficient, coexisting with nucleate boiling. An asymptotic model allows the prediction of the heat transfer data with a fitted value of n=1.5. A strong mass velocity effect is observed for the enhancement factor, implying that the correlations available from the literature for the convective evaporation will fail in predicting the present data. This effect decreases as the mass velocity increases.  相似文献   

4.
A number of correlation equations describing the performance characteristics of round tube and plate fin have been published in the open literature. However, many of these correlations are restricted to flat finned heat exchangers and a limited number of geometrical configurations. In this study, 28 heat exchanger samples were tested in an open circuit thermal wind tunnel over a velocity range of 1 to 20 m/s for a number of geometries. The geometrical variations include the number of tube rows, fin thickness and the spacing between fins, rows and tubes. Both flat and corrugated fins were tested and the results were correlated in terms of j and f factors as a function of Reynolds number and the geometrical parameters of the heat exchangers. An important feature of this correlation is the novel way in which the geometric parameters are expressed in the correlation. Ratios of these parameters are derived from consideration of the physics of the flow and heat transfer in the heat exchangers. This results in a more accurate and physically meaningful correlation which can be applied to a broader range of geometries. The correlation was validated against test data in the literature for round tube and plate fin with good agreement. It was found that the fin type affects the heat transfer and friction factor, and that the number of tube rows has a negligible effect on the friction factor. The number of tube rows effect was found to be influenced by the fin and tube geometries as well as the Reynolds number.Un certain nombre d'équations pour des caractéristiques du rendement des échangeurs de chaleur à tubes ronds plaques à ailettes ont été publiés dans le littérature. Cependant, dans bien des cas, ces corrélations se limitent aux échangeurs à ailette plate dans un nombre limité de configurations géométriques. Dans cette étude, 28 échangeurs de chaleur ont été testés utilisant une soufflerie à circuit ouvert avec une vitesse d'air de 1 à 20 m/s pour plusieurs formes géométriques. Les variations géométriques portaient sur le nombre de rangées de tubes, l'épaisseur des ailettes et la distance séparant des ailettes, des rangées et des tubes. Les ailettes plates et ondulées ont été testées et les corrélations en termes de facteurs j et f en fonction du nombre de Reynolds et les paramètres géométriques des échangeurs de chaleur. Un aspect important de cette corrélation est le façon originale d'exprimer des paramètres géométriques. Les rapports de ces paramètres sont obtenus à partir des flux et transferts de chaleur dans des échangeurs de chaleur. Ce procedé permet d'obtenir une corrélation plus précise et utilé qui s'applique à une gamme de formes géomátriques plus large. La corrélation a été validée en fonction des données concernant des échangeurs à tube et à plaque à ailettes dans la littérature: les données expérimentales et théoriques concordent bien. On a montré que le type d'ailette exerce une influence sur le transfert de chaleur et le facteur de frottement. Cependant, le nombre de rangées de tubes a un effet negligeable sur le coéfficient de frottement. On a démontré que l'effet nombre de rangées de tube est influencé par les géométries des ailettes et des tubes ainsi que par le nombre de Reynolds.  相似文献   

5.
Performance of a heat pump system using hydrocarbon refrigerants has been investigated experimentally. Single component hydrocarbon refrigerants (propane, isobutane, butane and propylene) and binary mixtures of propane/isobutane and propane/butane are considered as working fluids in a heat pump system. The heat pump system consists of compressor, condenser, evaporator, and expansion device with auxiliary facilities such as evacuating and charging unit, the secondary heat transfer fluid circulation unit, and several measurement units. Performance of each refrigerant is compared at several compressor speeds and temperature levels of the secondary heat transfer fluid. Coefficient of performance (COP) and cooling/heating capacity of hydrocarbon refrigerants are presented. Experimental results show that some hydrocarbon refrigerants are comparable to R22. Condensation and evaporation heat transfer coefficients of selected refrigerants are obtained from overall conductance measurements for subsections of heat exchangers, and compared with those of R22. It is found that heat transfer is degraded for hydrocarbon refrigerant mixtures due to composition variation with phase change. Empirical correlations to estimate heat transfer coefficients for pure and mixed hydrocarbons are developed, and they show good agreement with experimental data. Some hydrocarbon refrigerants have better performance characteristics than R22.  相似文献   

6.
This paper presents a critical review of correlations to compute heat transfer coefficients and pressure drop, for refrigerants condensing inside commercially available tubes with enhanced surfaces of various types, and a theoretical analysis of the condensation phenomenon. Predictions from some of the above equations are compared with experimental data. In addition, information is presented about the influence of small amounts of compressor oil on the condensation of refrigerants in enhanced tubes.  相似文献   

7.
The effects of the wall thickness of stainless steel heat exchanger tubes on the performance of adsorption machines, employing zeolite 4A coatings synthesized on metal heat exchanger tubes, are investigated. A recently developed mathematical model is used to determine the cycle durations when various wall thicknesses of the heat exchanger tubes as well as different zeolite layer thicknesses are utilized. For each case, the power and the COPcycle values of the system are estimated. In general, very high power and quite low COPcycle values are obtained when the proposed arrangement is utilized in the adsorption heat pumps. The zeolite layer thicknesses that may result in obtaining high COPcycle values are generally much higher than the optimum layer thickness value that maximizes the power and the utilization of layers thicker than the optimum value may lead to significant extensions in the cycle durations and hence to a decrease in the power obtained from the system. Decreasing the wall thickness of the heat exchanger tubes increases both the power and the COPcycle values when the optimum zeolite layer thickness for each wall thickness is taken into account. The possibility of such an enhancement will most probably be limited by the minimum wall thickness value that can actually be obtained by the available technology. The COP values of adsorption heat pumps may also be increased by using regenerative processes. Due to the generally low COP values obtained, the proposed arrangement seems especially suitable to be employed in adsorption machines utilizing energy sources of low economical value, such as waste heat. An optimum compromise between the COP value, which is closely related to the operating costs, and the power of the system should be provided, in case more valuable energy sources are utilized.  相似文献   

8.
A mathematical model was given to predict the mass transfer between flow of a mixture of ammonia vapor and water vapor and a flow of aqua ammonia solution at any interface within a packed bed absorber (PBA). The model used the molal mass and heat transfer coefficients in both the liquid and gas phases, the interface molal solution concentration, interface molal vapor mixture concentration, interface temperature, and the heat transfer coefficients in the liquid and gas phases in both sides of the interface. The heat transfer coefficient was corrected to account for the mass transfer. The model was also used to derive a convenient mass transfer coefficient which was based on the bulk mass concentration, not on the molal concentration, and not directly dependent on the concentration at the interface. To complete the model, mathematical correlations were derived for several thermodynamic and physical properties of aqua ammonia solution and vapor mixture. A computer program was developed to demonstrate the use of the model to predict the rate of absorption of ammonia vapor at an interface within the packed bed at various operating conditions.  相似文献   

9.
A plate-type evaporator, working with natural refrigerant circulation, has been investigated both experimentally and theoretically. Motivated by the phase-out of ozone-depleting substances, HCFC22 was compared to HFC134a and two zeotropic refrigerant mixtures. The effect of different separator liquid levels, i.e. refrigerant flows, and its influence on heat transfer was also studied. The investigated plate-type evaporator consists of thirteen vertical flow channels and its size is 3.0 m × 0.5 m. The heat source for the evaporator is a falling water film on the outside of the plate. Experimental studies have been carried out using a test facility that enabled detailed measurements of heat transfer and pressure drop. Experiments were compared to results from a calculation method that simultaneously calculates heat transfer and pressure drop in a variable number of steps along the evaporator. The calculation method is based on a pressure drop correlation proposed by the VDI-Wärmeatlas and a heat transfer correlation for vertical tubes proposed by Steiner and Taborek. For different evaporator duties, heat transfer was over predicted by 12% for pure fluids by 15% for mixtures. Calculated pressure drops were well within ±5% of the measured values. Changes in heat transfer due to different flows were closely predicted by the proposed calculation method.  相似文献   

10.
In this study, computer simulation programs were developed for multi-stage condensation heat pumps and their performance was examined for CFC11, HCFC123, HCFC141b under the same condition. The results showed that the coefficient of performance (COP) of an optimized ‘non-split type’ three-stage condensation heat pump was 25–42% higher than that of a conventional single-stage heat pump. The increase in COP differed among the fluids examined. The improvement in COP was due largely to the decrease in average temperature difference between the refrigerant and water in the condensers, which resulted in a decrease in thermodynamic irreversibility. For the three-stage heat pump, the highest COP was achieved when the total condenser area was evenly distributed to the three condensers. For the two-stage heat pump, however, the optimum distribution of total condenser area varied with working fluids. For the three-stage system, splitting the condenser cooling water for the use of intermediate and high pressure subcoolers helped increase the COP further. When the individual cooling water for the intermediate and high pressure subcoolers was roughly 10% of the total condenser cooling water, the optimum COP was achieved showing an additional 11% increase in COP as compared to that of the ‘non-split type’ for the three-stage heat pump system.  相似文献   

11.
Three different soils (sand, silty loam and silty clay) with five different degrees of saturation (0, 12.5, 25, 50 and 100%) were used in computer simulations. The performance of a ground heat pump system was found to depend strongly on the moisture content and the soil type (mineralogical composition). Alteration of soil moisture content from complete dryness to 12.5% of saturation strongly influences the ground heat pump performance, and any decrease of soil moisture in this range has a devastating effect on the coefficient of performance (COP). Therefore, it is beneficial to keep the soil moisture value as high as possible above dry soil conditions. Soil moisture content above the quarter saturation state leads to a much better heat pump performance. It was found, however, that the effect of moisture content variation above 50% of saturation on ground heat pump performance is relatively insignificant.  相似文献   

12.
This paper presents the experimental tests on HFC-134a condensation inside a small brazed plate heat exchanger: the effects of refrigerant mass flux, saturation temperature and vapour super-heating are investigated.A transition point between gravity controlled and forced convection condensation has been found for a refrigerant mass flux around 20 kg/m2 s. For refrigerant mass flux lower than 20 kg/m2 s, the saturated vapour heat transfer coefficients are not dependent on mass flux and are well predicted by the Nusselt [Nusselt, W., 1916. Die oberflachenkondensation des wasserdampfes. Z. Ver. Dt. Ing. 60, 541–546, 569–575] analysis for vertical surface. For refrigerant mass flux higher than 20 kg/m2 s, the saturated vapour heat transfer coefficients depend on mass flux and are well predicted by the Akers et al. [Akers, W.W., Deans, H.A., Crosser, O.K., 1959. Condensing heat transfer within horizontal tubes. Chem. Eng. Prog. Symp. Ser. 55, 171–176] equation. In the forced convection condensation region, the heat transfer coefficients show a 30% increase for a doubling of the refrigerant mass flux. The condensation heat transfer coefficients of super-heated vapour are 8–10% higher than those of saturated vapour and are well predicted by the Webb [Webb, R.L., 1998. Convective condensation of superheated vapour. ASME J. Heat Transfer 120, 418–421] model. The heat transfer coefficients show weak sensitivity to saturation temperature. The frictional pressure drop shows a linear dependence on the kinetic energy per unit volume of the refrigerant flow and therefore a quadratic dependence on the refrigerant mass flux.  相似文献   

13.
This paper describes the influence of a low viscosity polyolester based lubricating oil on the pool boiling heat transfer of the refrigerant R507. The pool boiling heat transfer coefficients for this refrigerant–oil mixture are measured on a smooth tube and on an enhanced tube. The investigation is made for oil mass fractions up to 10% and for saturation temperatures between −28.6°C and +20.1°C. For the smooth tube the heat transfer increases for increasing oil mass fractions up to 3% at lower saturation temperatures. At higher saturation temperatures the heat transfer decreases for increasing oil mass fractions for both tubes. For oil mass fractions greater than 1% at the higher saturation temperatures a range of decreasing heat transfer coefficient is found for increasing heat flux. The effect is caused by the different miscibility of the oil and the components of the refrigerant mixture.  相似文献   

14.
Evaporation heat transfer experiments for two refrigerants, R-407C and R-22, mixed with polyol ester and mineral oils were performed in straight and U-bend sections of a microfin tube. Experimental parameters include an oil concentration varied from 0 to 5%, an inlet quality varied from 0.1 to 0.5, two mass fluxes of 219 and 400 kg m−2s−1 and two heat fluxes of 10 and 20 kW m−2. Pressure drop in the test section increased by approximately 20% as the oil concentration increased from 0 to 5%. Enhancement factors decreased as oil concentration increased under inlet quality of 0.5, mass flux of 219 kg m−2 s−1, and heat flux of 10 kW m−2, whereas they increased under inlet quality of 0.1, mass flux of 400 kg m−2 s−1, and heat flux of 20 kW m−2. The local heat transfer coefficient at the outside curvature of an U-bend was larger than that at the inside curvature of a U-bend, and the maximum value occurred at the 90° position of the U-bend. The heat transfer coefficient was larger in a region of 30 tube diameter length at the second straight section than that at the first straight section.  相似文献   

15.
Carbon dioxide as a working fluid in refrigeration and heat pump systems is increasingly important in view of the CFC substitution problem. It is both under ecological and economical aspects an attractive alternative to the HFC working fluids at present in practical use. The thermophysical properties and characteristics of carbon dioxide are quite different from those of refrigerants used in conventional vapour compression cycles. Its application in conventional vapour compression refrigerating systems is limited by its critical parameters (tc=31.1°C and pc=73.8 bar). The possibility to use carbon dioxide also beyond these limits in high temperature processes, e.g. heat pumps, is given by the application of a trans-critical process. The design and construction of a commercial drying heat pump system (batch type cabinet dryer with 12 kW heating capacity and closed air circuit) using the natural working fluid carbon dioxide is shown and experimental results of investigations carried out are presented. Energy savings are given compared to manufacturer's data of energy consumption.  相似文献   

16.
Multi-stage heat pumps composed of a condenser, evaporator, compressor, suction line heat exchanger, and low and/or high stage economizers are studied by computer simulation. Their thermodynamic performance and design options are examined for various working fluids. In the simulation, HCFC22/HCFC142b and HFC134a are studied as an interim and long term alternatives for CFC12 while HFC32/HFC134a and HFC125/HFC134a are studied as long term alternatives for HCFC22. The results indicate that the three-stage super heat pump with appropriate mixtures is up to 27.3% more energy efficient than the conventional single-stage system with pure fluids. While many factors contribute to the performance increase of a super heat pump, the most important factor is found to be the temperature matching between the secondary heat transfer fluid and refrigerant mixture, which is followed by the use of a low stage economizer and suction line heat exchanger. The contribution resulting from the use of a high stage economizer, however, is not significant. With the suction line heat exchanger, the system efficiency increases more with the fluids of larger molar liquid specific heats. From the view point of volumetric capacity and energy efficiency, a 40%HCFC22/60%HCFC142b mixture is proposed as an interim alternative for CFC12 while a 25%HFC32/75%HFC134a mixture is proposed as a long term alternative for HCFC22.  相似文献   

17.
A ‘whistling' sound, which develops under transient conditions in some automobile air conditioning systems equipped with plate type evaporators, was identified as acoustic resonance. The ‘whistle' was reproduced in the laboratory under steady-state conditions. Testing of these heat exchangers was done first with R134a and then with nitrogen. Nitrogen testing proved to be much faster and easier and provided results comparable to the results obtained using R134a. The evidence presented in this work suggests that the acoustic resonance in this type of heat exchanger is similar in nature to the acoustic resonance problems reported for tube array in duct type heat exchangers. This is to the authors' knowledge the first time that acoustic resonance problems have been reported in the literature for plate heat exchangers.  相似文献   

18.
The present paper discusses the results of an extensive investigation about the performance of various fin configurations, carried out in the Luve Contardo experimental facilities and aimed to enhance the heat transfer capabilities of air-cooled condensers and liquid coolers. Test results here discussed are relative to 15 coil prototypes, having the same tube and fin geometry (25×21.65 mm staggered 5/8” tube banks, 2 mm fin spacing) but different fin surface geometry, from flat to wavy to louvered to “winglet”. Different rates of heat transfer and pressure loss enhancement were obtained, also depending on the quality of the pressing process. General approaches to evaluate the “goodness” of one fin design with respect to another one provided questionable results: pressure loss influence on the air flow cannot be properly evaluated unless the actual fan head curve and the coil dimensions (front area and rows number) are stipulated. The performance of air-cooled condensers was therefore predicted and compared, for various fin design and for coil arrangements of practical interest. The type of fin adopted strongly influences the heat exchanger performance and louvered fins generally provide the best results.  相似文献   

19.
The predictive methods for the calculation of the heat transfer coefficient α with pool boiling are important tools for the optimum design of the evaporator and for the successful operation of refrigeration units. The method given in the VDI Heat Atlas is discussed as an example of the currently available methods/ and results of recent experimental investigations on nucleate boiling of partly fluorinated hydrocarbons (HFCs) and of hydrocarbons (HCs) are added covering those parts where the predictive methods should be improved, namely boiling of mixtures, influence of surface structure and material of the heating wall, and influence of additional flow of bubbles and liquid in tube bundles.  相似文献   

20.
An experimental study on the behavior of water hold-up by condensation on various shapes of fin-and-tube heat exchangers with different surface hydrophilicity, i.e. dynamic contact angle of surface, was conducted. Condensation experiments were conducted, and the amount of water hold-up was measured. Condensation flow patterns on fins with different surface hydrophilicity were visualized. Results showed that the water hold-up of a heat exchanger could be reduced by the enhancement of the surface hydrophilicity and the design of a heat exchanger with a lower number of fins and fins with slant ends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号