首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
从热力学和扩散理论上探究了低碳钢气体渗氮氮化势对渗氮化合物层的影响。采用光学显微镜、扫描电镜、X射线衍射仪、电子探针、显微硬度计和电化学分析仪对渗氮层进行表征。结果表明:气体渗氮气氛中的氮化势对化合物层的影响规律随渗氮温度的改变有所不同。当渗氮温度不高于550℃时,高氮化势显著增加化合物层厚度;当渗氮温度不低于580℃时,尽管低氮化势延迟化合物层的形成,但化合物层一旦形成就快速增厚,且其厚度达到甚至超过高氮化势下化合物层的厚度。高氮化势渗氮化合物层中N浓度随深度降低,其最外层N浓度高达10 mass%;低氮化势渗氮化合物层中N浓度分布均匀,大约为5 mass%~6 mass%。高氮化势渗氮化合物层的耐蚀性较好,韧性和致密性较差。低氮化势渗氮化合物层缺陷较少,韧性较高。  相似文献   

2.
研究了42CrMo钢在530℃,0.02 MPa~(1/2)氮势和0.365 MPa~(1/2)氮势条件下的气体渗氮行为,表征了其渗氮层的相结构、显微组织、硬度以及韧性,通过调控氮势和渗氮时间获得了有效硬化层厚度相同的有化合物层和无化合物层试样,并在100 N和300 N的载荷下进行了磨损实验,建立了质量损失速率模型。结果表明:渗氮处理能有效提高材料的耐磨性,在100 N载荷时,试样为典型的粘着磨损,有化合物层试样由于具有较高的硬度,在低载时表现出较好的耐磨性,而在300 N载荷时,由于化合物层韧性较差,极易剥落,其主要磨损形式由粘着磨损变为磨粒磨损,磨损量急剧增加,耐磨性下降,无化合物层试样在高载时具有更好的耐磨性。  相似文献   

3.
采用预三价镀铬再穿透气体渗氮的方法,在纯铁表面制备CrN/Cr_2N涂层。研究不同镀铬层厚度、渗氮温度和时间所形成涂层的微观结构和相组成变化规律。随渗氮温度从540℃提高到700℃,镀铬层相结构变化为:Cr→CrN/Cr_2N(具有超点阵结构的Cr_2N)→CrN/Cr_2N。在同一温度(640℃)渗氮,随时间延长,Cr→CrN/Cr_2N,形成大量具有超点阵结构的Cr_2N相。SEM/EPMA测试结果表明,采用该复合处理制备的氮化铬层与基体间可形成互扩散的冶金结合,实现氮化铬层与基体间在组织结构上的平缓过渡,有利于提高涂层性能。  相似文献   

4.
TiAl基合金的辉光离子渗氮试验   总被引:4,自引:2,他引:4  
研究了TiAl基合金的辉光离子渗氮。渗氮气氛为NH3,渗氮温度分别为850℃、900℃、950℃,渗氮时间分别采用2h到12h不等。结果表明:TiAl基合金经辉光离子渗氮后,在表面形成由氮化物层和过渡层组成的氮化层,氮化层形成速度明显快于高温气体渗氮。采用NH3气氛、900℃×9h工艺参数时,渗层厚度可达12μm,渗层的显微硬度值可达1097HV0.1。  相似文献   

5.
深层QPQ工艺参数对3Cr13钢渗层组织的影响   总被引:1,自引:0,他引:1  
蔡文雯  罗德福 《热加工工艺》2012,41(24):176-179
选用3Cr13马氏体不锈钢作为实验材料,利用深层QPQ盐浴复合处理处理技术,研究氮化温度、氮化时间和氰酸根浓度对QPQ复合处理后的渗层组织的影响.运用显微硬度计检测渗层的厚度和显微硬度值的变化,运用金相显微镜观察氮化后试样渗层的显微组织,检测化合物层的厚度和质量.结果表明:随氮化温度的升高或氮化时间的延长渗层深度增加;经630℃×2h氮化可形成深度高达97 μm的渗层组织;随氮化温度的升高,试样的表面硬度值在600℃后呈下降趋势,有疏松层的形成;氰酸根浓度对渗层的厚度影响显著,特别体现在扩散层的厚度上.而对试样表面硬度影响很小.  相似文献   

6.
激光气体渗氮工艺对TC4钛合金表面性能的影响   总被引:1,自引:0,他引:1  
钛合金属于粘性材料,易发生粘着磨损,为提高钛合金件作为摩擦副使用时的寿命,需提高钛合金表面硬度及耐磨性。利用连续激光器在TC4合金表面进行激光气体渗氮,生成金黄色的氮化层。用SEM、EDS、XRD分析试样渗氮层的微观组织、元素分布以及物质组成。结果表明,经激光气体渗氮后在TC4表面生成了以Ti N为增强相的改性层,并且在未渗氮区有黑色粉末状Ti N生成。表层由氮化层、热影响区及母材组成。渗氮层与基材发生冶金结合,结合强度高,不易剥落。随着激光功率的提升,渗氮层厚度及硬度都有所增加。当功率为1 200 W时,钛合金表面渗氮层最高硬度超过1 800 HV0.3,渗氮层厚度也最大。在氮气流量为10 L/min时整个渗氮层中氮元素的含量相对较高。经过激光气体表面渗氮后渗氮层的摩擦系数较基体材料摩擦系数有明显降低,耐磨性更好。  相似文献   

7.
对TC4钛合金进行一系列离子渗氮试验,研究了离子渗氮温度、时间对渗层组织结构、显微硬度及表面残余应力的影响。结果表明:TC4钛合金经离子渗氮后表面硬度均可提高至基体的2~4倍,且表面为残余压应力状态。当渗氮温度800℃或渗氮时间8 h时,表面形成氮化物数量较少,光镜下只能观察到扩散层,随着渗氮温度的升高,渗氮时间的延长,表面由Ti N+Ti2N组成的化合物层厚度增加,致密性增强,硬度也随之增加。TC4钛合金经850℃×16 h离子渗氮后表面硬度可达到900 HV0.1左右,渗氮层由致密的化合物层+扩散层组成。随着渗氮温度继续增加,渗氮时间继续延长,表层氮化物聚集长大,渗氮层开始变得疏松。  相似文献   

8.
通过对渗氮层硬度分布、显微组织形貌和X射线衍射分析,以及力学性能、缺口敏感性和延迟断裂抗力等性能的分析,研究了18Ni300马氏体时效钢在不同渗氮温度和时间后的渗氮层及对力学性能的影响。当480℃渗氮时间为24 h时,渗氮层厚度为0.14 mm;渗氮时间为48 h时,厚度为0.17 mm;当500℃渗氮时间为24 h时,渗氮层厚度为0.17 mm;渗氮时间为48 h时厚度为0.19 mm。渗氮层厚度增加会降低了材料的韧性,但是渗氮层与基体之间仍有非常高的结合强度。提高渗氮温度和延长渗氮时间对渗氮层硬度影响不大,但都会增加基体残留奥氏体含量,从而降低了基体的硬度。渗氮后使得试样表面的压应力增加,对裂纹扩展有阻碍作用,使得带渗氮层试样的断裂韧度K_(IC)值更高;但随着渗氮温度和时间的增加,脆性的渗氮层厚度增加,抵消了畸变的Fe_4N相对裂纹扩展的阻碍作用,会使得K_(IC)值降低。缺口根部高硬度的渗氮层提高了缺口敏感性,渗氮温度和时间的增加使得缺口敏感指数由480℃×24 h的1.18,降低到500℃×48 h的0.917,缺口敏感性指数小于1时,不足以保障渗氮构件的安全性和可靠性。极低的拉伸速度(0.0015 mm/min)使得拉伸时缺口的抗拉强度不下降,证明渗氮并未增大延迟断裂倾向。  相似文献   

9.
为研究低温盐浴氮化提升马氏体钢耐冲刷腐蚀的机理,在410、430和450℃不同温度下对1Cr11不锈钢盐浴氮化8h。通过光学显微镜,X射线衍射分析仪(XRD),显微硬度仪对渗氮层的渗氮层厚度、显微组织及显微硬度进行研究,通过电化学工作站循环伏安法和双相流冲刷腐蚀模拟试验研究不锈钢耐蚀性。结果表明,渗氮层包括化合物层和扩散层,化合物层主要由N的过饱和固溶体αN和含氮化合物ε-Fe2-3N组成。渗氮层显微硬度约为基体硬度3倍;循环伏安法表明渗氮层和基体在NaCl溶液中均发生钝化,但渗氮层表面钝化膜在溶解后具有自我修复能力,抗点蚀能力好。经过120h的冲刷腐蚀模拟试验,氮化样品质量损失速率远低于未处理试样的质量损失速率,氮化可以有效提升试样的耐冲蚀性能。  相似文献   

10.
处理温度对1Cr18Ni9Ti钢脉冲直流等离子渗氮的影响   总被引:5,自引:0,他引:5  
利用脉冲直流辉光等离子技术,在不同的温度下对1Cr18N i9Ti奥氏体不锈钢进行了渗氮处理。利用光学显微镜、显微硬度计、XRD以及电化学工作站对渗氮层进行了分析。结果表明,处理温度显著影响1Cr18N i9Ti钢渗氮层的结构与性能。处理温度≤440℃时,渗层为纯S相结构;处理温度在460~540℃之间时,为S相+CrN+Fe4N的混合组织;处理温度≥560℃时,为CrN+Fe4N的化合物层。可在较宽的温度范围内对该钢进行脉冲直流等离子渗氮,获得表面硬度高于基底5~6倍的渗氮层。渗氮层的厚度随处理温度的升高而增加,而抗腐蚀性能随着处理温度的升高呈下降趋势。  相似文献   

11.
运用正交试验法,研究1Crl8NigTi奥氏体不锈钢等离子渗氮工艺.分析影响渗氮层结构和性能的主要工艺因素,获得渗氮工艺最优化参数.通过光学显微镜观察渗氮层的组织,利用显微硬度计测定各试样渗氮层的室温显微硬度.结果表明,影响渗氮工件表面结构和性能的主要因素是渗氮温度和N2:H2;渗氮层最大厚度为56.50μm,最大显微硬度为1 732.00HV;最佳氮化工艺参数为:氮化温度560℃,N2:H2=1∶1,工作炉压533.288 Pa,氮化时间3 h.  相似文献   

12.
本文研究了气体成分为N_2—H_2—CH_4,温度在500~750℃间变化的离子软氮化S15C钢的组织、硬度、相组成以及耐磨性,得到如下结果: 1)化合物层厚度在650℃处理时最厚,700℃以上则激剧减薄;600℃以上开始生成Fe—N—C三元共析层,其厚度随温度上升而增厚;扩散层深度在600℃处理时最大,700℃最小。 2)650℃以下以氮化为主,700℃以上为碳氮共渗。 3)离子软氮化材料的磨损率,当摩擦速度为1.96米/秒时与处理温度无关,大体为一常数;当摩擦速度为4.36米/秒的高速时,650℃处理的出现最大值。但在任何情况下均比正火处理材料的摩损率小得多。  相似文献   

13.
表面纳米化预处理对低碳钢气体渗氮行为的影响   总被引:22,自引:3,他引:22  
研究了表面喷丸纳米化预处理对气体渗氮行为的影响。利用低碳钢试样单面表面超声喷丸纳米化处理 ,另一面保持原始晶粒 ,在 46 0℃、5 0 0℃、5 6 0℃、6 40℃四种温度不同时间气体渗氮 ,通过金相观察和X射线衍射法测定渗氮层的厚度和种类。对比发现在 5 6 0℃以下渗氮时 ,经过表面喷丸纳米化预处理 :可以提高扩散系数D和气 -固传递系数 β,降低氮势门槛值 ;使常规渗氮温度降低 5 0℃左右或者渗氮时间缩短 5 0 % ;使渗氮层厚度随渗氮时间增长在初期就符合抛物线规律x =At0 5。 6 40℃短时间渗氮时 ,表面纳米化预处理仍然可以起到一定的加速作用 ,但是随着渗氮时间的延长 ,表面纳米化预处理优势消失 ,甚至会阻碍渗层厚度的增长  相似文献   

14.
处理温度对1Crl8Ni9Ti钢脉冲直流等离子渗氮的影响   总被引:1,自引:0,他引:1  
利用脉冲直流辉光等离子技术,在不同的温度下对1Cr18Ni9Ti奥氏体不锈钢进行了渗氮处理。利用光学显微镜、显微硬度计、XRD以及电化学工作站对渗氮层进行了分析。结果表明,处理温度显著影响1Cr18Ni9Ti钢渗氮层的结构与性能。处理温度≤440℃时,渗层为纯S相结构;处理温度在460~540℃之间时,为S相+CrN+Fe4N的混合组织;处理温度≥560℃时,为CrN+Fe4N的化合物层。可在较宽的温度范围内对该钢进行脉冲直流等离子渗氮,获得表面硬度高于基底5~6倍的渗氮层。渗氮层的厚度随处理温度的升高而增加,而抗腐蚀性能随着处理温度的升高呈下降趋势。  相似文献   

15.
对沉淀硬化型塑料模具钢NAK80进行了气体渗氮处理,利用XRD衍射仪、扫描电镜和显微硬度计分析了渗氮温度和渗氮时间对材料的物相组成、渗氮深度和显微硬度的影响,并对原材料和渗氮后的试样进行了盐雾腐蚀试验。研究表明,渗氮形成的扩散层由ε-Fe2-3N相与γ′-Fe4N相组成,随渗氮温度的升高,白亮层和渗氮层的厚度均持续增大;渗氮扩散层硬度最大值出现在530℃渗氮24 h的条件下,其硬度提高到原材料的1.8倍,开始腐蚀时间延长到原材料的10.7倍。  相似文献   

16.
1、前言当不在纯氨气氛而是在添有含碳气体的气氛中氮化时,所形成化合物层的脆性较低,在冲击负荷下剥落倾向较小。一种说明此效果的理论认为,这是由于碳氮化合物比无碳氮化物的脆性低。另外,含碳的化合物层还具有较高的耐磨性。对于化合物层因增碳而提高韧性的进一步论证认为:在Fe-N-C三元系中,由于碳的加入,ε-相区得到扩大,以致较少的氮量也会形成ε-氮化层(Fe_2-3N),因此得到的化合物层不是ε和γ′(Fe_4 N)混合相,而是ε-氮化物单相。此理论说明:氮化层性能得以改善的根本原因不在于碳氮化合物的形  相似文献   

17.
直流等离子氮化工艺对316L不锈钢组织和磨损的影响   总被引:1,自引:0,他引:1  
应用高压直流辉光放电等离子技术,改变氮化工艺参数,对316L奥氏体不锈钢进行表面渗氮处理。利用XRD衍射仪分析渗氮层的相组成,SEM观察氮化层厚度和结构,表面显微硬度计检测渗层的表面硬度,结果表明:当氮化温度T为400℃时,氮化层为单一的S-phase;当420℃≤T<480℃时,氮化层为CrN S-phase两相混合;当温度为480℃时,S-phase衍射峰消失,仅出现CrN相;渗层厚度约为5~9μm,渗层深度随着温度和气压的升高而增加;表面显微硬度随着温度和气压的增加而增加,最高的表面显微硬度可达839Hv0.1。在MM200磨损实验机上用环块式的方法评价磨损性能,结果表明等离子氮化显著提高了不锈钢表面的耐磨性能;用SEM观察磨损表面形貌,表明未氮化的不锈钢的磨损机制主要是粘着磨损、氧化磨损和磨粒磨损;等离子氮化试样的磨损机制主要是氧化磨损。  相似文献   

18.
研究了离子渗氮温度对00Cr22Ni5Mo3N双相不锈钢表面渗氮层性能和组织的影响。采用HXD-1000TMC显微硬度计、扫描电镜、能谱仪和PARSTA 4000电化学工作站对其表面硬度、组织、成分和耐腐蚀性能进行分析。结果表明,随渗氮温度的升高,渗氮层表面硬度先增加后降低。耐腐蚀性随渗氮温度的上升而降低。当渗氮温度高于500℃时,渗氮层中的Cr被大量析出,造成周围区域贫Cr,从而使耐腐蚀性能下降。当渗氮温度为450℃时,渗氮层的综合性能最佳。  相似文献   

19.
刘元福  陈吉  孙彦伟  黄澳  宋见  常季 《表面技术》2016,45(11):93-98
目的对SS304在300 Pa不同温度下进行表面离子渗氮,研究渗氮层和SS304的耐蚀性。方法通过动电位极化曲线和交流阻抗谱分析SS304和渗氮层在3.5%Na Cl溶液中的耐蚀性,采取金相显微镜、SEM、XRD对渗氮层和SS304的表面形貌和相组成进行分析测试,采用显微硬度计和镜像显微镜对渗氮层和SS304的硬度和截面形貌进行分析测试。结果 SS304中有γ相和M相,400℃时渗氮层试样出现γN、Fe_(2~3)N、Fe_4N,大于450℃时,渗氮层试样出现了Fe2~3N、Fe4N、Cr N。渗氮层在3.5%NaCl溶液中,400℃时渗氮层的自腐蚀电流密度比SS304的小,大于450℃时,渗氮层的自腐蚀电流密度比SS304的小且随渗氮温度增加而逐渐增大;400℃时渗氮层的自腐蚀电位比SS304的大,大于450℃时,渗氮层的自腐蚀电位比SS304的大且随渗氮温度增加而逐渐降低;400℃时渗氮层表面的膜电阻比SS304的大,大于≥450℃时,渗氮层表面的膜电阻比SS304的小。结论渗氮层的耐蚀性随温度的升高而降低,400℃时渗氮层的耐蚀性比SS304的好,大于450℃时,渗氮层的耐蚀性比SS304的低;400℃时渗氮层生成氮扩大奥氏体(γN),可大大增加耐蚀性,大于450℃时,渗氮层生成Cr N,耐蚀性减小。  相似文献   

20.
杨威  卢军  王琦 《热处理》2011,26(3):71-72
研究了A4双相不锈钢的离子渗氮工艺.结果显示,渗氮温度和气氛氮势(即氮与氢之比)对渗氮层的深度有影响,而对硬度无明显影响.当渗氮温度为580℃,N2:H2=1:9时,渗氮层表面硬度可达1200~1300HV0.3,渗氮层深度为0.10 mm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号