首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
铣削加工中铣削力是导致加工变形的直接原因,而航空薄壁件加工中,加工变形是加工误差产生的主要因素.本文以航空薄壁件铣削加工过程的铣削力为研究对象,通过确定铣削力模型和切削系数参数,建立了刚性和考虑刀具工件变形耦合的柔性预测两种模型.在柔性模型中,采用预扭Timoshenko梁单元的刀具/工件独立建模的方法建立有限元模型,利用Python语言在通用有限元软件Abaqus下迭代求解.实验验证表明预测模型具有很高的准确性和有效性.  相似文献   

2.
对比传统加工机床,机器人的刚度与定位精度较低,为提高机器人辅助磨削的加工质量,需要控制其加工过程中的接触压力。基于球形弹性磨具磨削时的接触特性,以磨具的下压量为自变量,磨具与工件的接触压力为因变量进行有限元仿真,对下压量-接触压力仿真结果进行曲线拟合,并通过接触实验验证其准确性,以此建立基于环境模型修正的阻抗力学控制模型,从而进行自由曲面力控实验。结果表明:建立的基于环境模型修正的阻抗控制方法能有效改善球形弹性磨具的力控性能,自由曲面力控精度达到±0.5 N,且可为球形弹性磨具复杂曲面的磨削加工提供稳定的磨削压力。   相似文献   

3.
BP神经网络在立铣刀结构参数优化中的应用   总被引:1,自引:0,他引:1  
钛合金薄壁件的铣削加工过程中,刀具磨损速度快,并且工件容易变形,其主要因素是加工过程中切削力大,切削温度高。文章利用有限元仿真软件Advant Edge FEM铣削仿真数据,建立整体式立铣刀结构参数与切削力和切削温度的BP神经网络预测模型,并对切削预测模型进行了切削实验验证。在此基础上,利用BP神经网络模型的预测结果对整体式立铣刀的结构参数进行了优化,切削实验证明,优化后的刀具参数可以有效地降低切削力和切削温度,从而有效地改善过程中刀具的切削性能和工件的加工质量。  相似文献   

4.
针对复杂曲面薄壁件加工过程中半精/精加工工艺中铣削颤振问题,以整体叶轮为例,提出一种可以明显增加叶片刚度的整体叶轮非均匀余量加工工艺优化方法。借助有限元分析软件获取工件工艺系统的固有频率和模态质量,计算出两种叶片加工工艺系统的模态刚度。基于再生型颤振分析理论建立了均匀余量和非均匀余量叶片铣削加工稳定性极限叶瓣图。对均匀余量和非均匀余量两种叶片进行切削试验验证,证明了该非均匀余量工艺优化设计策略可以明显提高加工系统刚度,对整体叶轮实际加工和生产有一定的指导意义。  相似文献   

5.
在预先获得工件材料特性参数的基础上,并根据铣削加工的特点,利用有限元软件Deform 3D建立了铣削加工齿轮的有限元模型,基于此模型对高速铣齿加工过程中的切削力和温度进行了有限元模拟。通过铣削力试验测得了相同加工条件下的铣削力值,与仿真结果相差较小,证明了所建有限元模型的正确性,也表明了采用此模型进行的温度的模拟结果是可信的。铣齿加工过程的有限元仿真研究为下一步铣齿加工精度的提高奠定了基础。  相似文献   

6.
为提高超精密金刚石铣削加工自由曲面光学元件的加工精度和消除光学系统设计误差,提出了一种适用于多轴金刚石铣削加工的误差补偿方法。通过建立自由曲面光学元件铣削加工过程中的刀具误差模型,用于校正刀尖半径误差、径向偏移误差以及刀具不平整度误差。标准球面测试结果显示其主要误差源产生的残余误差由194nm降低为40nm。在黄铜工件表面加工得到的自由曲面光学表面峰谷值误差和残余误差分别为336nm和49nm,证明了该误差修正方法的有效性。  相似文献   

7.
钻铆机器人广泛应用于航空薄壁件加工装配中,当末端配备重载执行器进行钻铆作业时,因受到自身重力和横向切削力的影响会导致末端变形,加工质量变差,工业机器人这种弱刚性限制了其在精密加工领域的发展。以工业机器人自动钻铆系统为研究对象,建立运动学模型;选择合适的试验进行关节刚度辨识;在刚度模型基础上定义关节刚度性能指标;并通过粒子群优化算法寻找工业机器人作业时刚度最大位姿,确定所处位姿的关节角参数。通过选择合适的加工位姿提升工业机器人的刚度性能,保证孔位加工质量,提高生产效率,也可避免危险事故的发生。通过以上研究,可以求得符合钻铆工况下刚度最优的机器人工作位姿,并在假设实验中,验证了该姿态优化方法的可行性和有效性。  相似文献   

8.
微小型工业机器人以其强耦合性、可扩展性、高精度被广泛应用到各行业,然而大多数机器人以串联型为主,其结构弱刚度问题会导致机器人动作时产生振动从而影响整体稳定性。以服务型机器人为研究对象,为保证机器人结构刚度以及抓取物体过程的稳定性,对机器人整体结构刚度进行优化。对机器人进行运动学静态建模,利用刚度等效原理计算机器人关节刚度;在抓取位姿范围约束下,将机器人末端刚度椭球半轴长作为优化指标,采用改进粒子群算法(IPSO)对机器人在不同抓取位姿的刚度进行优化,并将结果与遗传算法、粒子群算法的优化结果进行对比;通过ANSYS有限元分析和实验对比机器人优化前后的末端变形量,结果表明:基于IPSO算法的机器人抓取系统刚度优化对提高机器人整体稳定性具有一定意义。  相似文献   

9.
针对支撑基座的竖直刚度计算问题,围绕如何提高有限元计算准确性,提出一种等效刚度模型替代宏观结构模型的分析方式,基于有限元法进行微观粗糙表面仿真和分析,利用积分思想计算等效刚度。通过轮廓扫描仪获取真实工件表面的形貌数据,重构符合高斯分布的微观粗糙表面,使用ANSYS软件仿真计算接触刚度,结果与不同理论接触模型对比,验证了有限元微观接触表面刚度的合理性。将宏观结构模型有限元计算刚度与等效刚度模型计算刚度对比,结果表明接触面的塑性变形和曲面的基体变形对刚度影响最大,为后续支撑系统的结构优化提供依据。  相似文献   

10.
机器人铣削加工让刀误差建模与分析   总被引:1,自引:0,他引:1  
在机器人切削加工工艺过程中,让刀误差是影响切削加工精度的重要因素之一。以球头铣刀铣削加工为研究对象,视其为准静态运动过程,根据机器人静弹性力学模型和球头铣刀切削力模型,建立了机器人切削过程的让刀误差数学模型。同时,提出了一种基于基因遗传算法的刀具姿态优化方法,以减小切削过程的让刀误差。最后,通过仿真分析了切削参数、刀具姿态和机器人刚度等因素对让刀误差的影响,验证了刀具姿态优化方法的可行性。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

18.
The motion of melt droplets in spray degassing process was analyzed theoretically. The height of the treatment tank in spray degassing process could be determined by the results of theoretical calculation of motion of melt droplets. To know whether the melt droplets would solidify during spraying process, the balance temperature of melt droplets was also theoretically analyzed. Then proof experiments for theoretical results about temperature of melt droplets were carried. In comparison, the experimental results were nearly similar to the calculation results.  相似文献   

19.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

20.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号