首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用Gleeble-1500型热模拟机对微合金化高强钢在变形温度为900~1100℃、应变速率为0.01~30 s^(-1)的条件下进行热压缩实验,得到流变应力曲线。分析高强钢的动态再结晶行为,分别采用综合考虑杨氏模量E和奥氏体自扩散系数D对绝对温度依赖性的、包含可变应力指数n的物理本构方程和蠕变应力指数为5的物理本构方程,建立实验钢应变补偿的流变应力预测模型。结果表明:随着变形温度的升高和应变速率的降低,动态再结晶更易于发生。利用应变补偿的物理本构方程预测流变应力的精度较高,其中,包含可变应力指数n的物理本构方程的预测精度(相关系数R=0.991,平均相对误差δ=4.81%)高于蠕变应力指数为5的物理本构方程(相关系数R=0.989,平均相对误差δ=6.49%)。这是由于:当物理本构方程中的蠕变应力指数为5时,材料的变形机制仅有滑移和攀移,而包含可变应力指数n的物理本构方程综合考虑了所有的变形机制,预测精度更高。  相似文献   

2.
宁静  王敖  苏杰  程兴旺 《锻压技术》2022,(12):234-239
采用Gleeble-3800热模拟试验机研究了含有W、Mo等多种碳化物形成元素的新型中合金超高强度钢的热变形行为,变形温度为800~1200℃,应变速率为0.01~10 s^(-1),最大应变量为0.7。热模拟试验得到了试验钢的高温流变应力曲线,其变形抗力随变形温度的降低和应变速率的提高而增加。在变形温度1000℃以上进行热压缩时,试验钢可发生动态再结晶;变形温度的升高会促进晶粒粗化及二次再结晶的发生,而应变速率的提升有利于促进再结晶晶粒的细化和均匀化。根据试验钢的高温流变应力曲线,计算出试验钢的热加工本构方程,并建立了真应变为0.4的热加工图。结合微观组织演变的分析结果,得出试验钢的最佳热加工区域应为:变形温度为1000~1100℃、应变速率为1~10 s^(-1)。  相似文献   

3.
利用热压缩试验、显微组织分析等手段,研究了一种新型低碳含铌热轧H型钢在1000~1200 ℃变形温度和0.1~5 s-1应变速率下的热变形行为。分析了变形参数对试验钢微观组织的影响,建立了耦合应变量因素的改进型本构方程,并采用临界比的临界应变模型对发生动态再结晶的临界应变值进行了预测。结果表明:较低应变速率和变形温度下,试验钢的原始奥氏体组织更均匀且平均晶粒尺寸更小;应变速率的升高不利于动态再结晶的发生。发生动态再结晶的临界应变与峰值应变的关系为εc/εp=0.47。与耦合应变量因素有关的本构方程和临界应变预测模型能较准确地预测各变形温度下低碳含铌热轧H型钢的流变应力和动态再结晶临界应变值。  相似文献   

4.
针对大型特厚F316H不锈钢阀门锻件易出现粗晶、混晶和探伤无底波等难题,对其高温下的流变行为进行了研究,以探索最佳的热加工变形工艺参数来指导实际生产应用。采用Gleeble-1500D热模拟试验机,在应变速率为0.001~1 s^(-1)、变形温度为950~1250℃条件下开展了热压缩变形试验。基于Arrhenius模型,建立了高温流变应力本构方程,并计算得到热变形激活能为393.857 kJ·mol^(-1)。基于DMM动态材料模型,建立了应变量为0.8的热加工图,在变形温度为1100~1150℃、应变速率为0.005~0.01 s^(-1)时,功率耗散因子达到峰值,结合微观金相分析,该变形条件下晶粒发生了充分的动态再结晶,可作为热加工的主加工区域。结合热加工图,设计了核电不锈钢阀体锻件(规格为12寸)的锻造工艺,并经生产验证得到了晶粒度、无损探伤和力学性能优异的锻件。  相似文献   

5.
基于Gleeble-3500热模拟压缩实验,对热变形行为及热加工图进行分析.结果 表明:34CrNiMo6钢的热变形激活能为365.653kJ/mol;在变形温度1030~1120℃、应变速率0.005~0.03s-1及变形温度1050~1090℃、应变速率0.1~0.5s-1区域内发生的动态再结晶较为充分,是最佳的加...  相似文献   

6.
《塑性工程学报》2016,(2):130-135
采用Gleeble-3800热模拟试验机,在温度850℃~1200℃、应变速率0.001s~(-1)~10s~(-1)下进行热压缩实验,研究300M高强钢的热变形行为。根据双曲正弦函数,分析全应变条件下流动应力与Z参数间的关系,得到300M高强钢的变形激活能Q及参数A、n、α的值,建立全应变本构方程。基于动态材料模型,建立300M高强钢的热加工图,并讨论了300M钢组织演化规律。结果表明,考虑应变补偿的本构方程,在实验条件内计算的流动应力与实验所测结果吻合度较高;随变形温度的升高及应变速率的减小,300M钢的奥氏体晶粒尺寸增加;变形温度900℃~1 200℃、应变速率0.001s~(-1)~0.1s~(-1)是300M高强钢较佳的热加工工艺范围。  相似文献   

7.
为了研究退火态42CrMo钢的热变形行为,利用Gleeble3800热模拟试验机进行了单道次热压缩实验,获得了变形温度930~1230℃、应变速率0.001~1 s-1条件下的高温流变应力曲线。分别应用Arrhenius方程和Yada模型构建了42CrMo钢的高温本构模型和动态再结晶动力学模型,并基于动态材料模型应用不同变形条件下的峰值应力构建了其热加工图。结果表明,在大部分变形条件下,高温流变应力曲线呈典型动态再结晶特征,由于动态再结晶的作用,流变应力随变形温度的升高或应变速率的降低而减小。基于峰值应力构建的42CrMo钢高温本构模型和动态再结晶模型可以用于预测不同变形条件下的流变应力和微观组织演变。此外,根据42CrMo钢的热加工图,最佳热加工工艺参数范围为1100~1230℃、0.01~1 s-1。  相似文献   

8.
使用Gleeble-3800热模拟机对42CrMo钢在变形温度为1 123~1 223 K,变形速率为0.1~10 s-1下进行热压缩实验,研究了其热变形行为,构建了42CrMo钢的本构方程;通过对材料常数(α,n,Q和ln A)的分析,得到了流动应力的预测模型;绘制了42CrMo钢的热加工图,得到最优热加工工艺区间。结果表明:材料对温度、应变速率敏感,其流变应力随着变形温度增加和应变速率降低而减小。流动应力预测模型预测精度为0.987,42CrMo钢最优工艺范围为:变形温度1 140~1 223 K,应变速率0.1~1.5 s-1。本研究可对42CrMo钢热变形加工工艺制定提供指导。  相似文献   

9.
通过热压缩实验,研究了Inconel X-750镍基高温合金在变形温度为950~1200℃,应变速率为0. 1~10 s~(-1),变形量为50%的热变形行为。研究结果表明:变形温度为1100和1200℃,应变速率为0. 1和1 s~(-1)时,合金在热变形过程中可以达到动态平衡,在其余变形条件下,合金在热变形过程中均出现连续的流变软化现象,合金的热变形激活能为377. 12 k J·mol~(-1)。通过建立材料的动态模型,制作了合金的热加工图,发现合金的功耗效率等值线在温度为1075~1085℃时,由于γ'相的溶解而发生转折,结合合金的热变形组织演变过程,确定合金在变形温度为1100~1200℃、应变速率为0. 1 s~(-1)时可以得到均匀细小的再结晶组织。  相似文献   

10.
对GE1014钢进行了热变形温度为850~1200℃、应变速率为0.01~10 s-1、应变量为0.7条件下的高温轴向压缩试验,对流变曲线进行了摩擦修正,建立了GE1014钢的热本构方程和Z参数方程,基于动态材料模型理论建立了GE1014钢的热加工图,并通过材料变形后的显微组织分析确定了热加工图的准确性和最后热变形区域。结果表明,摩擦效应在低变形温度或高应变速率条件下对GE1014钢的高温流变曲线影响显著;计算得到摩擦修正后的GE1014钢的热变形激活能为400.197 kJ·mol-1;当试验钢的真应变为0.4和0.7时,在试验条件下的高温、低应变速率区的能量耗散效率η达到最大值0.34。综合分析热加工图及试验钢的显微组织,确定了GE1014钢在变形温度为1100~1150℃、应变速率为0.1 s-1条件下能够获得均匀、细小的完全动态再结晶组织,此时GE1014钢的热加工性能最好。  相似文献   

11.
使用Gleeble-1500D热模拟试验机对9Ni钢进行了热压缩变形实验,研究其在应变量为0.8、 变形温度为800~1150℃、 应变速率为0.1~5 s-1下的热变形行为,并对不同热变形条件下实验样品的微观组织进行了系统研究.研究发现,针对不同的变形条件,真应力-真应变曲线中的流变应力随着变形温度的升高以及应变速率...  相似文献   

12.
为了预测含铝节镍型奥氏体耐热钢(AFA钢)的热变形行为,利用Gleeble-3500热力模拟试验机对AFA钢进行了温度950~1150℃、应变速率0.01~10 s-1、真应变为0.51~1.2的高温热压缩试验,构建了本构方程,并建立了热加工图。结果表明,在同一应变速率下,随着变形温度的升高,AFA钢的流变应力逐渐降低,在同一变形温度下,随着应变速率的增加,流变应力随之增加。在真应变为0.69(变形量为50%)下,预测应力与实际应力的线性相关系数R2为0.998 53,随着应变的增加,材料的失稳区域先减小后增大,集中于低温区;高效率区域变大,且高效率区域集中于变形温度为1100~1150℃、应变速率为0.01~0.1 s-1之间,说明AFA钢适合在高温低应变速率的情况下进行热加工。  相似文献   

13.
通过对410不锈钢进行热压缩试验,分析了不同变形温度及变形速率对应力应变曲线的影响,并以此为基础构建了本构方程及热加工图.发现相同应变速率的真应力应变曲线,温度越大,真应力越小.不同应变速率的流变曲线,低应变速率下,应力达到峰值后,将出现下降趋势;而高应变速率下,应力将一直升高,直到达到最大应变量时达到最高.分析热加工...  相似文献   

14.
15.
在Gleeble 3500多功能热模拟试验机上,对高强DP980钢进行了单道次压缩实验,研究了该钢在1323~1423 K和0. 05~10 s-1变形条件下的热变形行为,分析了变形温度和变形速率对流变应力曲线的影响,揭示了变形软化机制,分析了在热变形过程中微观组织的演变规律,分阶段建立了热压缩变形抗力本构模型。结果表明:流变应力对变形温度和应变速率都很敏感,随变形温度的增加和变形速率的减小而减小,低应变速率下呈动态再结晶型软化机制;应变速率ε· 0. 1 s-1时,呈动态回复型软化机制。同一变形温度下,低应变速率易于该钢中奥氏体再结晶的启动;同一变形速率下,变形温度越高,奥氏体再结晶现象越明显。分阶段所建立的本构模型预测值与实验值的相关系数达到0. 9978,平均相对误差绝对值为2. 67%,证明此模型具有较高精度。  相似文献   

16.
为得到组织均匀、晶粒度符合要求且无锻造缺陷的某履带板高性能锻件,首先,通过热压缩实验获取了42CrMo钢的流变数据,并构建了Arrhenius本构方程。结果表明:当应变速率为0.01~0.1 s^(-1)、温度高于850℃时,材料的真实应力-真实应变曲线存在明显的峰值,软化效应明显,其动态再结晶软化效应显著大于加工硬化效应;当应变速率较高时,材料的应力峰值不明显,软化效果不显著,这说明在高应变速率下,材料来不及完全发生再结晶,其软化机制为动态回复。其次,构建了42CrMo钢在不同变形量下的热加工图,发现42CrMo钢的失稳高风险区主要位于低温、高应变速率区域,也有少量位于高温、低应变速率区域;当对数应变速率小于-2.5、温度为850~1050℃时,材料在热加工时具有较高的热加工稳定性。再次,使用数值仿真分析了某履带板的锻造成形过程,得到了成形效果良好,无折叠、欠填充等锻造缺陷的锻件,各方面指标均达到了设计要求。最后,通过生产试制验证了锻造工艺的可行性,通过微观组织分析验证了推荐的锻造温度和应变速率能够得到细小、均匀的组织。  相似文献   

17.
利用Gleeble-3500热模拟试验机,研究了含铌低合金高强钢在900~1100℃,应变速率为0.1、1和5 s-1,真应变至0.7的热压缩变形行为。基于实验数据,得到材料本构方程和表征动态再结晶的参数。运用Cingara-Mc Queen方程建模预测流变应力并验证。结果表明,高温低应变速率条件下动态再结晶是材料主要软化机理,峰值应力与Z参数成线性关系。由热加工图得到,当应变速率在0.1~0.67 s-1,温度在1030~1100℃范围内材料加工性能良好。  相似文献   

18.
《塑性工程学报》2020,(2):135-143
采用Gleeble-3500热模拟试验机对高铝高强钢在变形速率为0. 01~10 s-1、变形温度为925~1225℃的热变形条件下进行压缩试验,以真应力-应变曲线为基础数据研究其高温再结晶行为。通过对晶粒尺寸的统计来探究热变形条件对热变形后晶粒尺寸的影响。通过处理加工硬化率-应力曲线,标定数据中能揭示动态再结晶演变过程的3个特征点,即临界应变、峰值应变及最大软化速率应变。引入表征晶体动力学的双曲正弦模型,通过线性回归求解得到动态再结晶激活能Q,建立流变应力本构方程,并引入Z参数作为预测发生再结晶程度的依据。结果表明:高铝高强钢热加工过程是加工硬化和再结晶软化共同作用的。在发生再结晶条件范围内,Z值越小,发生动态再结晶的程度越大。  相似文献   

19.
利用Gleeble-3500热模拟试验机,在850~1180℃温度下,以0.001~20 s-1的应变速率对300M高强钢进行变形量为60%的热压缩变形试验,对其在不同变形条件下的变形行为进行研究。结果表明,300M高强钢的变形行为与变形参数密切相关,变形温度越高,应变速率越低,越有利于动态再结晶的发生。基于试验数据,建立了Arrhenius双曲正弦方程中Q,A,n,α与真应变的本构关系,从而进一步建立了包含变形温度、应变速率及应变在内的300M高强钢的高温变形本构方程。为了验证该本构方程的正确性,对应力计算值与试验值进行了对比及平均误差分析,最大误差为14.2%,但整体均控制在10%以下。分析表明,应用所建立的本构方程得到的应力计算值与试验值吻合较好。  相似文献   

20.
采用Gleeble 3800热模拟试验机,对高铁刹车盘用CrMoV钢在应变速率0.01~1 s~(-1)和变形温度850~1150℃下进行热压缩变形试验;分析了其流变曲线;并基于流变数据建立了其热变形方程和热加工图;用光学显微镜观察了其不同条件下的显微组织。结果表明,在高温、低应变速率条件下CrMoV钢为动态再结晶型,如1150℃、0.01 s~(-1),在低温、高应变速率条件下CrMoV钢为动态回复型,如950℃、1 s~(-1);CrMoV钢的热变形激活能为406.7781 kJ/mol;建议最佳的工艺参数范围为变形温度1080~1140℃,应变速率0.01~0.1 s~(-1)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号