首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 63 毫秒
1.
基于SIFT 特征和粒子滤波的目标跟踪方法   总被引:1,自引:0,他引:1  
现有的基于外观的目标跟踪算法,在光照变化和遮挡的情况下,不能准确跟踪目标.针对这个问题,考 虑到尺度不变特征(SIFT 特征)对于光照变换、尺度变换以及仿射变换的不变性,提出了一种利用SIFT 特征建立 目标模型,结合粒子滤波实现目标跟踪的新方法.在跟踪过程中,根据目标模型和候选目标中SIFT 特征点在时间 窗内的匹配情况,自适应更新目标模型的特征点,使模型能够适应目标外观变化.仿真结果证明了方法在不同环境 下的健壮性.  相似文献   

2.
为解决传统尺度不变特征变换(SIFT)算法在光照变化和遮挡的情况下,不能快速准确跟踪目标的问题,提出一种采用粒子滤波和SIFT建立目标模型的方法,利用粒子滤波预测目标在当前帧中可能的位置。计算目标可能存在的区域SIFT特征点,构建特征描述向量,进行目标匹配。根据目标模型和目标候选区域中SIFT特征点的匹配情况,在跟踪过程中更新特征描述向量,实现目标跟踪。实验结果证明,该算法可提高目标检测和跟踪的速度以及准确性。  相似文献   

3.
基于颜色特征与SIFT特征自适应融合的粒子滤波跟踪算法   总被引:1,自引:0,他引:1  
针对序列图像中的运动目标在跟踪过程中发生运动模糊以及部分遮挡的问题进行了研究, 提出一种将改进的颜色直方图特征模型与尺度不变特征(SIFT)模型相融合的粒子滤波跟踪算法。采用基于模糊逻辑的方法, 根据当前跟踪环境自适应调节两种特征信息的权重, 从而实现特征信息间的融合, 提高描述目标观测的可靠性。实验结果证明, 该算法优于传统的单特征或采用固定权值的多特征目标跟踪算法。  相似文献   

4.
针对受复杂背景、光照以及目标尺度变化等因素的影响,目标模板更新精度不高,导致跟踪算法鲁棒性差的问题,提出了一种基于深度特征和模板更新的自适应粒子滤波目标跟踪方法。首先对跟踪目标进行仿射变换;然后构造一个12层的卷积神经网络来提取跟踪目标及其仿射变换的深度特征得到目标模板和候选模板,并以此构建候选模板库;其次采用粒子滤波算法跟踪目标,将预测结果与候选模板库中的模板进行匹配,确定新的目标模板并自适应更新候选模板库。实验结果表明,该算法在遮挡、光照、尺度变化、目标旋转和复杂背景的恶劣条件下仍能稳定地跟踪目标,与其他7种先进算法在18组测试视频中进行比较,具有更高的目标跟踪精度和更强的鲁棒性。  相似文献   

5.
相关滤波算法因其优越的高效性和鲁棒性被广泛应用于目标跟踪领域,但是该算法无法很好地处理目标遮挡和尺度变化等问题。针对该现象,提出了一种融合相关粒子滤波目标跟踪算法,该算法采用多个相关滤波器,学习到更多目标信息和背景信息,提高了目标与背景辨识度,并且引进了粒子滤波随机采样策略,在目标离开遮挡物时能够快速捕捉到目标。在尺度估计中引入了多尺度因子,对定位到的目标进行多尺度缩放,选用与滤波器响应值最大区域对应的尺度因子作为缩放比例,从而对目标进行尺度更新;粒子滤波算法随着粒子数目的增加,其计算量也随着增加,针对该问题,提出了基于粒子繁衍的重采样算法,在跟踪效率上做了提升。对提出的算法进行了三部分对比实验,实验结果验证了提出算法在处理目标遮挡和尺度变化问题上的有效性。  相似文献   

6.
针对SiamRPN跟踪算法在目标快速运动时跟踪目标易丢失以及模板不更新影响跟踪效果问题,提出一种Kalman滤波与模板更新相结合的SiamRPN目标跟踪方法。利用训练好的SiamRPN跟踪算法对目标进行跟踪,并将上一帧目标物体的中心点位置及速度输入卡尔曼滤波器,当RPN网络得到的跟踪框响应得分较低时,利用卡尔曼滤波器重新预测目标位置,搜索得到新的跟踪框。并根据上一帧目标的速度,自适应扩大搜索区域。重新设计并训练了模板更新网络,并在其中添加了通道注意力机制,在跟踪过程中对目标模板迭代更新。实验结果表明,该算法在OTB2015的成功率和精确率分别为67.2%和89.1%,在VOT2016的EAO提升24.3%,与其他算法相比在解决目标形变和运动模糊问题具有显著优势。  相似文献   

7.
随着人工智能科学的发展,目标跟踪成为中外学者研究的热点,近年来很多目标跟踪算法相继被提出,其中,经典的卡尔曼滤波算法常被用于目标跟踪领域。然而,在实际情况中,目标跟踪过程常涉及到非线性非高斯问题,由于粒子滤波算法在非线性非高斯系统中有较好的性能,因此将其引入目标跟踪研究领域。针对粒子滤波算法存在的跟踪精度差、实时性不高等问题,近年来国内外学者提出很多改进方法。从特征融合、算法融合和自适应粒子滤波三个方面介绍了相关改进方法的基本思想,展望了粒子滤波算法在目标跟踪领域的发展方向。  相似文献   

8.
本文针对单目标多径跟踪问题提出了一种基于粒子滤波的多径伯努利跟踪算法.该算法首先利用多径伯努利滤波算法解决了超视距雷达系统中的多径传播问题,然后结合粒子滤波实现方式解决了系统模型非线性问题.仿真实验表明该算法比传统的高斯混合多径伯努利滤波具有更高的跟踪精度.  相似文献   

9.
融合典型纹理特征的粒子滤波目标跟踪方法   总被引:1,自引:0,他引:1       下载免费PDF全文
针对图像目标跟踪中,跟踪窗口易受噪声扰动所产生的跟踪不稳定问题。创造性地结合多种典型纹理特征和粒子滤波算法,将其应用于实时跟踪领域。选择3种典型的纹理特征,即灰度共生矩阵纹理特征、幅值与方向加权的梯度纹理特征、局部二进制模式纹理特征进行跟踪实验。通过对比实验,在精度与速度两方面测试纹理特征作为跟踪特征的实际效果。作为跟踪中特征的选择,实验结果说明灰度共生矩阵纹理信息在抗扰动与实时处理方面表现出良好的属性特征。  相似文献   

10.
董蓉  李勃  陈启美 《控制与决策》2012,27(3):399-402
传统的mean-shift跟踪算法不能跟踪目标的旋转、缩放运动,且常常因此造成定位不准.鉴于此,将尺度不变特征变换(SIFT)特征检测融入到mean-shift跟踪过程,提出SIFT特征点的尺度变化与目标的尺度变化成正比,特征点主方向变化与目标旋转角度一致,给出了基于SIFT特征的自适应目标尺度、方向计算方法,且利用带方向、可变带宽的椭圆核改进传统的mean-shift跟踪方法.实验表明,该算法能够较好地跟踪目标的旋转、缩放运动,定位也更准确.  相似文献   

11.
基于粒子滤波器的人体目标跟踪   总被引:3,自引:0,他引:3  
提出一种非常有效且具有良好鲁棒性的人体目标跟踪算法。由于传统的卡尔曼滤波不能很好地解决非线性、非高斯问题的跟踪,为此提出了一种新型的粒子滤波器跟踪算法。该算法采用加权的粒子集模型表示状态的分布,用迭代运算跟踪状态的变化,从而有效地解决了数据处理的量大和模型出现高维的问题。实验结果证明,该算法对固定摄像机单一背景下人体目标跟踪是快速且有效的。该算法可广泛应用于航空器位置的跟踪、噪声环境通信信号的估计、人体或车辆的跟踪。  相似文献   

12.
针对水处理过程中混凝絮体的跟踪问题,提出一种融合压缩感知与粒子滤波的絮体跟踪算法,即采用压缩感知技术提取絮体的图像特征,并以此进行单帧图像检测,得到检测值;同时通过粒子滤波实现非线性非高斯状态空间模型的絮体位置的最优估计,采用最优估计值和检测值进行数据关联,从而确定各个粒子的航迹以实现对絮体跟踪。实验结果表明该算法实现了絮体的实时跟踪及沉降速度的计算,有效地解决了获取图像特征时运算量大、效率低等问题,保证了跟踪的精度及效率。  相似文献   

13.
实时目标跟踪过程中,为提高跟踪精度,要求跟踪的窗口也要实时的随着目标大小的变化而变化。以Mean shift算法为基础,根据概率检测法定位目标在各帧图像中的中心点,提出了一种自适应更新窗口的算法。同时结合归一化转动惯量NMI对目标进行识别,实时定位中心标示的对象。实验结果表明,该方法能在目标尺寸放大或缩小时选择合适的跟踪窗口,而且具有较强的跟踪抗干扰性。  相似文献   

14.
基于多特征融合的粒子滤波多目标跟踪算法研究   总被引:1,自引:0,他引:1  
目前,应用于多目标跟踪的BPF算法仍不能很好解决跟踪过程中出现的相似干扰、目标交叉、短时部分遮挡等问题,且在跟踪过程中,粒子集的分配也对整个跟踪存在不良影响。对此,提出一种基于HOG+Adaboost检测和混合粒子滤波(MPF)相结合,并在跟踪过程中为每个新目标相互独立地分配新的粒子集,采用分块—积分直方图和LBP特征相融合作为目标的观测模型的算法。实验结果证明,该算法在实现多目标跟踪的基础上,很好地解决了上述问题,提高了多目标跟踪的鲁棒性。  相似文献   

15.
传统的Mean Shift算法,在诸如跟踪目标出现尺度变化、旋转、噪声干扰等复杂情况下,无法得到准确的跟踪结果。提出了一种基于尺度不变特征变换SIFT(Scale Invariant Feature Transform)特征度量的Mean Shift目标跟踪算法,首先根据SIFT算子计算跟踪目标附近的关键点位置和尺度,并获取该尺度空间下关键点邻域的特征向量,然后用跟踪目标区域内的特征向量的模值-方向分布直方图表示该目标,最后使用Mean Shift算法进行跟踪。实验结果表明,该算法在跟踪目标出现尺度变化、旋转、噪声干扰和遮挡等情况下能够准确地跟踪物体,鲁棒性好。  相似文献   

16.
在视频车辆跟踪算法中针对传统粒子滤波的非线性、非高斯性可能导致跟踪过程的不准确性,提出一种基于Mean-Shift的卡尔曼(Kalman)粒子滤波算法。该算法利用建立基于目标颜色直方图特征模型对视频车辆目标进行建模,并将其与Kalman滤波相结合进行更新;通过采用Mean Shift算法将Kalman滤波器引用到粒子滤波器当中,通过预测迭代,从而达到对车辆的运行轨迹的修正。将先验信息预测与粒子滤波相结合在保持跟踪系统整体上的非线性、非高斯性,兼顾了卡尔曼滤波局部的线性高斯特性。实验结果表明,该方法与传统粒子滤波方法相比,具有较好的实时性和较高的准确率,能够准确稳定地对目标车辆进行跟踪。  相似文献   

17.
针对传统粒子滤波目标跟踪算法在目标与背景颜色相似情况下目标定位偏差大、易导致丢失目标的缺陷,提出一种基于角点和颜色模型的粒子滤波目标跟踪算法。首先,提出一种改进SUSAN角点检测算法,采用圆形模板邻域内像素灰度值中值代替模板中心像素灰度值作为模板"核"来检测区域目标角点,其改进SUSAN角点算法在继承原有SUSAN算法计算简单、定位准确、具有旋转不变性等特点的同时,具有更好抗噪声性能;其次,利用HSV颜色模型光照不敏锐特性,对检测到的角点建立HSV颜色模型,并将其嵌入到粒子滤波框架中,实现对目标的跟踪。实验结果表明,当背景与目标颜色相近时,该算法能够有效避免背景对目标的干扰,取得了较好的目标跟踪性能。  相似文献   

18.
针对基于Mean-Shift目标跟踪算法中遇到的不能对模板进行实时更新的问题,提出一个基于混合高斯背景建模的目标模板更新算法.该算法将目标视为背景,对目标中的每一个像素点利用三个高斯函数对它进行建模,利用每次Mean-Shift跟踪到的目标区域来对先前建立的混合高斯模型进行实时更新,将混合高斯模型得到的目标模板作为下一帧跟踪的目标模板.该算法较好地解决了基于Mean-Shift算法的模板更新问题,实验证明该算法是有效的.  相似文献   

19.
动态背景下基于粒子滤波的运动目标跟踪方法   总被引:2,自引:0,他引:2  
在智能视频监控系统中,实现对动态背景下的运动目标准确跟踪是一个难点问题。使用一种基于粒子滤波的方法来对动态背景下的运动目标进行跟踪。该方法基于贝叶斯估计,利用粒子集来表示概率,通过递推的贝叶斯滤波来近似逼近最优化的估计结果。实验结果证明,该方法可准确跟踪动态背景下的运动目标,是一种有效的目标跟踪方法。  相似文献   

20.
针对不稳定的关键点对以SIFT(Scale Invariant Feature Transform)为目标特征的视觉跟踪算法的影响,提出基于SIFT排序的视觉跟踪算法。为实现SIFT排序,提出空域稳定因子和时域稳定因子,并由此构成重要性权重,以表征各个特征点的重要程度。在SIFT排序的基础上,各个关键点按照重要性权重的不同参与跟踪,从而实现基于SIFT排序的视觉跟踪。该算法克服了不稳定的关键点对跟踪结果的影响,从而提高跟踪的准确性和鲁棒性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号