首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The fragmentation characteristics of native and permethylated oligosaccharides using a matrix-assisted laser desorption/ionization (MALDI) time-of-flight/time-of-flight tandem mass spectrometer are described. The use of two MALDI matrixes, alpha-cyano-4-hydroxycinnamic acid (CHCA) and 2,5-dihydroxybenzoic acid (DHB), is shown to control the nature and extent of fragmentation observed in collision-induced dissociation experiments on synthetic oligosaccharides. CHCA promotes the occurrence of glycosidic cleavages, whereas DHB promotes a wide range of fragmentations. These latter fragmentations include glycosidic cleavages, cross-ring cleavages, and the formation of "internal" cleavage ions, which are derived from elimination of substituents from around the pyranose ring. This extensive fragmentation is shown to facilitate the detailed structural characterization of high-mannose and hybrid-type N-glycans purified from avidin. Importantly, the cross-ring fragments reveal linkage information, unambiguously define antennae substitutions, and differentiate isomeric glycoforms.  相似文献   

2.
Oligosaccharides are known to play important roles in many biological processes. In the study of oligosaccharides, collision-induced dissociation (CID) is the most common dissociation method to elucidate the sequence and connectivity. However, a disadvantage of CID is the decrease in both the degree and efficiency of dissociation with increasing mass. In the present study, we have successfully performed infrared multiphoton dissociation (IRMPD) on 39 O-linked mucin-type oligosaccharide alditols (both neutral and anionic). CID and IRMPD spectra of several oligosaccharides were also compared. They yielded nearly identical fragment ions corresponding to the lowest energy fragmentation pathways. The characteristic fragmentations of structural motifs, which can provide the linkage information, were similarly presented in both CID and IRMPD spectra. Multistage of CID (MS(3) or MS(4)) is commonly needed to completely sequence the oligosaccharides, while IRMPD of the same compounds yielded the fragment ions corresponding to the loss of the first residue to the last residue during a single-stage tandem MS (MS(2)). Finally, it is shown that the fragmentation efficiency of IRMPD increases with the increasing size of oligosaccharides.  相似文献   

3.
We extend the application of electron capture dissociation (ECD) (which requires at least two charges) to oligosaccharides without basic functionalities by utilizing alkali, alkaline earth, and transition metals (Na+, K+, Ca2+, Ba2+, Mg2+, Mn2+, Co2+, and Zn2+) as charge carriers in electrospray ionization. Both linear and branched oligosaccharides were examined, including maltoheptoase, p-lacto-N-hexaose, and an N-linked glycan from human alpha1-acid glycoprotein. For comparison, infrared multiphoton dissociation (IRMPD) was also applied to all oligosaccharide species. We show that, for certain metal-adducted oligosaccharides, particularly maltoheptaose, cross-ring cleavage, which can provide saccharide linkage information, is the dominant fragmentation pathway in ECD. By contrast, glycosidic cleavages dominate in IRMPD although cross-ring fragmentation was also observed to varying degrees depending on metal ion type. The branched N-linked glycan did not fragment as easily following ECD compared to the linear oligosaccharides, presumably due to intramolecular noncovalent interactions. However, this limitation was partially overcome with a combined ECD/IRMPD approach (activated ion ECD). For all metal-adducted oligosaccharides, complementary structural information was obtained with ECD as compared to IRMPD. Our results demonstrate that ECD of metal-adducted oligosaccharides is a valuable tool for structural characterization of oligosaccharides.  相似文献   

4.
MALDI-TOF-MS of 2-aminobenzamide-labeled N-glycans was shown to allow the analysis of sodium adducts and proton adducts in the positive-ion mode as well as deprotonated species in the negative-ion mode from a single preparation spot, using N-glycans of adult worms of the human parasite Schistosoma mansoni as model substances. Fragment ion analysis of these species was performed by MALDI-TOF/TOF-MS. With laser-induced dissociation, sodium adducts and proton adducts mainly showed cleavage of glycosidic linkages. High-energy collision-induced dissociation of sodium adducts resulted in extensive cross-ring cleavages and provided information on linkage positions. Of particular value were the negative-mode MALDI-TOF/TOF-MS analyses of the deprotonated N-glycans, which featured (1) various ring fragmentations giving linkage information, (2) extensive (1,3)A cross-ring cleavage of mannoses carrying an antenna readily revealing the composition of the antenna, (3) D as well as [D-18]- ions providing specifically the composition of the 6-antenna, and (4) pronounced stability of fucose linkages resulting in detailed information on fucosylation positions. The outlined approach thus allows the acquisition of both heCID MS/MS spectra of sodium adducts and LID MS/MS spectra of deprotonated species from a 2-aminobenzamide-labeled N-glycan prepared in 6-aza-2-thiothymine, resulting in a wealth of structural information.  相似文献   

5.
A new matrix-assisted laser desorption/ionization (MALDI) time-of-flight/time-of-flight (TOF/TOF) high-resolution tandem mass spectrometer is described for sequencing peptides. This instrument combines the advantages of high sensitivity for peptide analysis associated with MALDI and comprehensive fragmentation information provided by high-energy collision-induced dissociation (CID). Unlike the postsource decay technique that is widely used with MALDI-TOF instruments and typically combines as many as 10 separate spectra of different mass regions, this instrument allows complete fragment ion spectra to be obtained in a single acquisition at a fixed reflectron voltage. To achieve optimum resolution and focusing over the whole mass range, it may be desirable to acquire and combine three separate sections. Different combinations of MALDI matrix and collision gas determine the amount of internal energy deposited by the MALDI process and the CID process, which provide control over the extent and nature of the fragment ions observed. Examples of peptide sequencing are presented that identify sequence-dependent features and demonstrate the value of modifying the ionization and collision conditions to optimize the spectral information.  相似文献   

6.
Infrared multiphoton dissociation (IRMPD) of alkali metal-coordinated oligosaccharides was obtained in a Fourier transform mass spectrometer. Fragmentation of the oligosaccharides was observed for Li+- and Na+-coordinated species. For larger alkali metal ions (K+, Rb+, and Cs+), the major products were the alkali metal ions. IRMPD experiments were performed on milk oligosaccharides, and the dissociation thresholds were determined. The threshold values were found to differ for the isomers. It is suggested that the threshold may be useful for differentiating isomeric compounds. Additionally, oligosaccharide alditols from biological samples were analyzed. Comparison of the collision-induced dissociation (CID) and IRMPD spectra of oligosaccharide alditols revealed that IRMPD could be used as a complementary method to obtain structural information.  相似文献   

7.
The structural elucidation of oligosaccharides remains a major challenge. Mass spectrometry provides a rapid and convenient method for structural elucidation based on tandem mass spectrometry. Ions commonly are selected and subjected to collision-induced dissociation (CID) to obtain structural information. Unfortunately, N-linked oligosaccharides are relatively large compounds and are not readily fragmented using CID. In this report, we illustrate the use of infrared multiphoton dissociation (IRMPD) to obtain structural information for large N-linked oligosaccharides. The IRMPD and CID behavior of oligosaccharides were compared for high-mannose-type oligosaccharides. Fragmentation that could not be obtained through conventional CID in Fourier transform ion cyclotron resonance mass spectrometry was observed with N-linked oligosaccharides. O-Linked and N-linked glycans of similarly large sizes were compared. It was found that internal cross-ring cleavages were observed only for N-linked oligosaccharides. The mannose branch points of N-linked oligosaccharides are apparently more susceptible to cross-ring cleavages.  相似文献   

8.
Negative-ion electrospray mass spectrometry (ES-MS) with collision-induced dissociation (CID) and MS/MS scanning on a quadrupole-orthoganal time-of-flight instrument provide a sensitive means for structural analysis of neutral underivatized oligosaccharides. Molecular mass information can be readily obtained from the dominant [M - H]- ions in the ES mass spectrum formed with subnanomole amounts of oligosaccharides, and similar sensitivity is available from CID-MS/MS to give structural details. The CID spectra of 14 oligosaccharides demonstrated that sequence and partial linkage information can be derived and isomeric structures can be differentiated. Series of C-type fragment ions give sequence information while the double glycosidic D-type cleavage of a 3-linked GlcNAc or Glc and the saccharide ring fragmentation of the 0,2A-type from 4-linked GlcNAc or Glc can provide partial linkage information. The distinctive D- and A-cleavages are important for differentiation of oligosaccharide type 1 and type 2 chains and to define the blood group H, Le(a), Le(x), Le(b), and Le(y) determinants carried by their fucosylated analogues.  相似文献   

9.
Surface-induced dissociation (SID) has been implemented in a matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI TOF MS), allowing production of tandem mass spectrometric information for peptide ions (MALDI TOF SID TOF). The instrument retains the standard operational modes such as the reflectron monitoring of the MALDI-generated intact ions and postsource decay. We show through ion trajectory simulations and experimental results that implementing SID in a commercial MALDI TOF spectrometer is feasible and that the SID products in this instrument fall in an observation time frame that allows the specific detection of fast-fragmentation channels. The instrument design, pulse timing sequence, and high-voltage electronics together with SID spectra of MALDI-generated peptide ions are presented. Standard peptides such as YGGFLR, angiotensin III, fibrinopeptide A, and des-Arg1-bradykinin were dissociated by means of hyperthermal collisions with a gold surface coated with a self-assembled monolayer of 2-(perfluorodecyl)ethanethiol. With the extraction fields and the short observation times used, the spectra obtained show intense low-mass ion signals such as immonium, b2, b3, and y2 ions. TOF data analysis involved matching simulated and experimental flight times and indicates that the observed fragments are produced at approximately 250 ns after the precursor ion collides with the surface. This submicrosecond gas-phase fragmentation time frame is complementary to the observation time frame of existing SID spectrometers, which are on the order of 10 micros for tandem quadrupoles and are larger than a few milliseconds for SID implemented in Fourier transform ion cyclotron resonance spectrometers.  相似文献   

10.
2-Aminobenzamide-derivatized oligosaccharides were separated by three lectin column chromatographies and then subjected to matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) for structural characterization of the carbohydrates. The combination of sequential exoglycosidase digestion and MALDI-TOF MS greatly facilitates the monosaccharide sequencing and is more feasible than size-exclusion column chromatography in terms of the time consumed and the laboriousness of the procedure. By this strategy, microsequencing of 2-3 pmol of oligosaccharide derivatives could be achieved. Furthermore, spectra obtained by the post source decay (PSD) mode provide excellent sequence information. The relative intensities of metastable ions due to fragmentation at glycosidic linkages were different among linkage isomers of particular oligosaccharides. These results demonstrate that PSD analysis possesses significant potential for the estimation of glycosidic linkage in carbohydrate structures.  相似文献   

11.
Extensive cross-ring fragmentation ions, which are very informative of the linkages of the monosaccharide residues constituting these molecules, were readily observed in the MALDI-TOF/TOF/MS/MS spectra of oligosaccharides. These ions, in some cases, were more intense than the commonly observed Y and B ions. The A-type ions observed for the simple oligosaccharides allowed the distinction between alpha(1-4)- and alpha(1-6)-linked isobaric structures. The distinction was based not merely on the differences in the type of ions formed, but also on the ion intensities. For example, both alpha(1-4)- and alpha(1-6)-linked isobaric structures produce ions resulting from the loss of approximately 120 m/z units, but with different intensities, as a result of the fact that they correspond to two different ions (i.e., 0,4A- and 2,4A-ions), requiring different energies to be formed. Abundant A- and X-type ions were also observed for high-mannose N-glycans, allowing the determination of linkages. In addition, the high resolution furnished by MALDI-TOF/TOF allowed determination of certain ions that were commonly overlooked by MALDI-TOF or MALDI-magnetic sector instruments as a result of their lower resolution. Moreover, as a result of the fact that MS/MS spectra for parent ions and all fragment ions are acquired under the same experimental conditions, accurate determination of the molar ratios of isomeric glycans in a mixture analyzed simultaneously by MALDI-TOF/TOF tandem MS becomes possible.  相似文献   

12.
The matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS technique described to date has proven to be a convenient and rapid method for identification and characterizations of proteins. However, the general MALDI-TOF MS analysis of complex carbohydrates and glycopeptides still entails special consideration of ionization and the fragmentation characteristics of labile carbohydrate moieties. In this study, an efficient and practical method we termed the matrix-dependent selective fragmentation (MDSF) technique of MALDI-TOF/TOF MS, which allows highly sensitive and reliable fragmentation of oligosaccharides and N-glycopeptides. Results from application of the MDSF technique to TOF/TOF MS analysis demonstrated that in comparison to the conventional postsource decay up to 170 times more sensitive product ion peaks could be obtained. It was also suggested that MDSF generates desired structural information based on the controlled cleavage of the singly charged precursor ion with different electronic excited states made by this method. Ideal product ion peaks observed by MDSF in TOF/TOF MS facilitated structural characterization of complex oligosaccharide derivatives including unstable Neu5Ac and Fuc residues and N-glycopeptides.  相似文献   

13.
The detailed characterization of protein N-glycosylation is very demanding given the many different glycoforms and structural isomers that can exist on glycoproteins. Here we report a fast and sensitive method for the extensive structure elucidation of reducing-end labeled N-glycan mixtures using a combination of capillary normal-phase HPLC coupled off-line to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and TOF/TOF-MS/MS. Using this method, isobaric N-glycans released from honey bee phospholipase A2 and Arabidopsis thaliana glycoproteins were separated by normal-phase chromatography and subsequently identified by key fragment ions in the MALDI-TOF/TOF tandem mass spectra. In addition, linkage and branching information were provided by abundant cross-ring and "elimination" fragment ions in the MALDI-CID spectra that gave extensive structural information. Furthermore, the fragmentation characteristics of N-glycans reductively aminated with 2-aminobenzoic acid and 2-aminobenzamide were compared. The identification of N-glycans containing 3-linked core fucose was facilitated by distinctive ions present only in the MALDI-CID spectra of 2-aminobenzoic acid-labeled oligosaccharides. To our knowledge, this is the first MS/MS-based technique that allows confident identification of N-glycans containing 3-linked core fucose, which is a major allergenic determinant on insect and plant glycoproteins.  相似文献   

14.
A method is described to obtain multicollision dissociation threshold (MCDT) values. These values provide relative reaction thresholds for dissociation in the three major gas-phase fragmentation reactions of oligosaccharides complexed to alkali metal ions. The quasimolecular ions are produced using matrix-assisted laser desorption/ionization Fourier transform mass spectrometry. The MCDTs for alkali metal ion dissociation and glycosidic bond and cross-ring cleavages were resolved from the kinetic energy dependence of collision-induced dissociation (CID) products. The relative strengths of alkali metal ion binding to N,N'-diacetylchitobiose (chitobiose) and N,N',N"-triacetylchitotriose (chitotriose) were probed using sustained off-resonance irradiation (SORI) CID. Experiments to evaluate MCDT values and the method for obtaining them were performed by studying alkali metal ion coordinated crown ethers. Molecular dynamic simulations were also performed to provide insight into the alkali metal ion binding of chitin-based oligosaccharides. The relative dissociation thresholds of glycosidic bond cleavages and cross-ring cleavages were determined for various alkali metal ion coordinated oligosaccharides. The activation barriers of glycosidic bond cleavages were found to depend on the size of the alkali metal ion. Cross-ring cleavages were found to be independent of the alkali metal ion but dependent on linkage type. The results suggest that glycosidic bond cleavages are charge-induced while cross-ring cleavages are charge-remote processes.  相似文献   

15.
Glycoproteins are a functionally important class of biomolecules for which structural elucidation presents a challenge. Fragmentation of N-glycosylated peptides, employing collisionally activated dissociation, typically yields product ions that result from dissociation at glycosidic bonds, with little occurrence of dissociation at peptide backbone sites. We have applied two dissociation techniques, electron capture dissociation (ECD) and infrared multiphoton dissociation (IRMPD), in a 7-T Fourier transform ion cyclotron resonance mass spectrometer, in the investigation of an N-glycosylated peptide from an unfractionated tryptic digest of the lectin of the coral tree, Erythrina corallodendron. ECD provided c and z. ions derived from the peptide backbone, with no observed loss of sugars. Cleavage at 11 of 15 backbone amine bonds was observed. The lack of cleavage at sites located close to the glycosylated asparagine residue may result from steric blocking by the glycan. IRMPD provided abundant fragment ions, primarily through dissociation at glycosidic linkages. The monosaccharide composition and the presence of three glycan branch sites could be determined from the IRMPD fragments. The two types of spectra, obtained with the same instrument, thus provide complementary structural information about the glycopeptide. The current result extends the applicability of ECD for glycopeptide analysis to N-glycosylated peptides and to peptides containing branched, highly substituted glycans.  相似文献   

16.
The identification of proteins by tandem mass spectrometry relies on knowledge of the products produced by collision-induced dissociation of peptide ions. Most previous work has focused on fragmentation statistics for ion trap systems. We analyzed fragmentation in MALDI TOF/TOF mass spectrometry, collecting statistics using a curated set of 2459 MS/MS spectra and applying bootstrap resampling to assess confidence intervals. We calculated the frequency of 18 product ion types, the correlation between both mass and intensity with ion type, the dependence of amide bond breakage on the residues surrounding the cleavage site, and the dependence of product ion detection on residues not adjacent to the cleavage site. The most frequently observed were internal ions, followed by y ions. A strong correlation between ion type and the mass and intensity of its peak was observed, with b and y ions producing the most intense and highest mass peaks. The amino acids P, W, D, and R had a strong effect on amide bond cleavage when situated next to the breakage site, whereas residues including I, K, and H had a strong effect on product ion observation when located in the peptide but not adjacent to the cleavage site, a novel observation.  相似文献   

17.
Noncovalent duplex DNA/drug complexes formed between one of three 14-base pair non-self-complementary duplexes with variable GC content and one of eight different DNA-interactive drugs are characterized by infrared multiphoton dissociation (IRMPD), and the resulting spectra are compared to conventional collisionally activated dissociation (CAD) mass spectra in a quadrupole ion trap mass spectrometer. IRMPD yielded comparable information to previously reported CAD results in which strand separation pathways dominate for complexes containing the more AT-rich sequences and/or minor groove binding drugs, whereas drug ejection pathways are prominent for complexes containing intercalating drugs and/or duplexes with higher GC base content. The large photoabsorptive cross section of the phosphate backbone at 10.6 mum promotes highly efficient dissociation within short irradiation times (<2 ms at 50 W) or using lower laser powers and longer irradiation times (<15 W at 15 ms), activation times on par with or shorter than standard CAD experiments. This large photoabsorptivity leads to a controllable ion activation method which can be used to produce qualitatively similar spectra to CAD while minimizing uninformative base loss dissociation pathways or instead be tuned to yield a high degree of secondary fragmentation. Additionally, the low-mass cutoff associated with conventional CAD plays no role in IRMPD, resulting in richer MS/MS information in the low m/z region. IRMPD is also used for multiadduct dissociation in order to increase MS/MS sensitivity, and a two-stage IRMPD/IRMPD method is demonstrated as a means to give specific DNA sequence information that would be useful when screening drug binding by mixtures of duplexes.  相似文献   

18.
A novel in-line surface-induced dissociation (SID) device was designed and implemented in a commercial QTOF instrument (Waters/Micromass QTOF II). This new setup allows efficient SID for a broad range of molecules. It also allows direct comparison with conventional collision-induced dissociation (CID) on the same instrument, taking advantage of the characteristics of QTOF instrumentation, including extended mass range, improved sensitivity, and better resolution compared with quadrupole analyzers and ion traps. Various peptides and a noncovalent protein complex have been electrosprayed and analyzed with the new SID setup. Here we present SID of leucine enkephalin, fibrinopeptide A, melittin, insulin chain-B, and a noncovalent protein complex from wheat, heat shock protein 16.9. The SID spectra were also compared to CID spectra. With the SID setup installed, ion transmission proved to be efficient. SID fragmentation patterns of peptides are, in general, similar to CID, with differences in the relative intensities of some peaks such as immonium ions, backbone cleavage b- versus y-type ions, and y- versus y-NH3 ions, suggesting enhanced accessibility to high-energy/secondary fragmentation channels with SID. Furthermore, these results demonstrate that the in-line SID setup is a valid substitute for CID, with potential advantages for activation of singly/multiply charged peptides and larger species such as noncovalent protein complexes.  相似文献   

19.
Distinguishing the epimers iduronic acid (IdoA) and glucuronic acid (GlcA) has been a long-standing challenge for the mass spectrometry analysis of glycosaminoglycan (GAG) oligosaccharides. In this work, electron detachment dissociation (EDD) and Fourier transform ion cyclotron resonance mass spectrometry is shown to provide mass spectral features that can distinguish GlcA from IdoA in heparan sulfate (HS) tetrasaccharides. EDD of HS tetrasaccharide dianions produces a radical species that fragments to produce information-rich glycosidic and cross-ring product ions which can be used to determine the sites of acetylation/sulfation. More significantly, EDD of HS tetrasaccharide epimers produces diagnostic product ions that can be used to distinguish IdoA from GlcA. These diagnostic product ions are not observed in the tandem mass spectra obtained by collisionally activated dissociation or infrared multiphoton dissociation of the tetrasaccharides, suggesting a radical-initiated mechanism for their formation. Differences in the observed product ions obtained by EDD of the tetrasaccharide epimers can be rationalized by simple alpha-cleavage of an oxy radical located at C2 or C3 or a radical at C3 or C4. These radicals are proposed to arise from a hydrogen rearrangement in which a hydrogen atom is transferred from the C2 or C3 hydroxyl group or C3 or C4 to a carboxy radical at C5. This hydrogen transfer depends on the proximity of the carboxy radical to the hydroxyl group on C2 or C3 or the hydrogen on C3 or C4 and is thus influenced by C5 stereochemistry. These epimer-sensitive fragmentations should allow this approach to be applied to the structural analysis of a wide variety of GAG oligosaccharides.  相似文献   

20.
Yu G  Zhao X  Yang B  Ren S  Guan H  Zhang Y  Lawson AM  Chai W 《Analytical chemistry》2006,78(24):8499-8505
Negative-ion electrospray tandem mass spectrometry with collision-induced dissociation is assessed for sequence determination of multiply sulfated oligosaccharide fragments of carrageenan obtained from partial depolymerization of the polysaccharides by either enzymatic digestion or mild acid hydrolysis. Carrageenan oligosaccharides with homogeneous disaccharide compositions were used to establish their fragmentation pattern, which was then applied to sequence determination of unusual oligosaccharides with either "hybrid" biose compositions or odd-numbered residues. As sulfate groups are labile, sulfate loss during collision-induced association was prevented by sodium adduction. The product ion spectra of [M - Na]- (where M represents the sodium salt of oligosaccharides) feature an extensive series of B- and C-type glycosidic cleavages, whereas the Y-type cleavage occurs mainly at the sulfated residues. The assignment of reducing or nonreducing terminal fragments was assisted by oligosaccharide reduction and the product ion spectra of the derived alditols. Due to the anionic nature of the sulfate present, high-sensitivity detection (1-5 pmol, using a hexasaccharide as an example) was obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号