首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
等离子体辅助反应式脉冲激光熔蚀制备AIN薄膜的低温生长   总被引:3,自引:0,他引:3  
汪洪海  郑启光 《功能材料》1999,30(2):204-206
使用等离子体辅助反应式脉冲激光溅射沉积薄膜的方法在Si(111)和Si(100)基片上已经成功地低温制备出AIN多晶膜。实验表明,当脉冲能量密度DE=1.0J·cm^-2,脉冲频率f=5Hz,氮气气压PN2=1.33×10^4Pa,基底温度tsub=200℃,放电电压V=650,基靶距离ds-T=4cm时薄膜的生长速度等于6nm/min。AIN薄膜的折射率为2.05,和基底的取向关系分别为:AIN  相似文献   

2.
二价离子替代的Nasicon及其应用研究   总被引:2,自引:0,他引:2  
含二价阳离子的Nasicon,M ̄(2+)Nasicon(M=Mg、Ca、Sr、Zn)可由母体Na_3Zr_2Si_2PO_(12)(Nasicon)为起始原料与相应的二价离子的盐浓液或熔盐进行离子交换而制得。X射线衍射分析结果表明离子交换后的产物M ̄(2+)-Nasicon大多保持原母体的C_(2/c)结构。交流阻抗技术测定的电导率数据显示含不同的二价替代离子的Nasicon的电导率相差甚大。其中最好的是Mg ̄(2+)-Nasicon,其电导率在400℃时可达到1.48×10 ̄(-2)S/cm。Mg ̄(2+)-Nasicon用作微功率固态电池Mg/CuCl的电解质,该电池的开路电压为2.07V,短路电流为1mA。平均放电电压为1.6V,电池的放电容量是3.4mAH。  相似文献   

3.
Ag-BaO薄膜是一种新型光电发射薄膜材料。制备出ITO/Ag-BaO/AU三明治电极结构,在红外超短激光脉冲(hv=1.17eV)作用下,借助内场辅助方法,使得Ag-BaO薄膜的光电发射量子效率提高了一个数量级,由钠场时的10^-7量级提高到内场偏压为10V时遥2.2×10^-6量级;样品的阈值光强由60KW/cm^2降为40KW/cm^2,约降低了30%。这些结果表明:内场辅助方法确实是降低A  相似文献   

4.
三维碳化硅/碳化硅陶瓷基编织体复合材料   总被引:3,自引:0,他引:3  
采用化学气相浸渗法(CVI),制备出三维Hi-NicalonSiC/SiC陶瓷基编织体复合材料.经30h CVI致密化处理后,复合材料的密度达到 259·cm-3,所研制的三维 SiC/SiC复合材料不仅具有较高的强度,而且表现出优异的韧性和类似金属材料非灾难性的断裂特征.复合材料的主要力学性能指标为:弯曲强度 860MPa,断裂位移 1.2mm,断裂韧性41.5MPa·m1/2,断裂功28.1kJ·m-2,冲击韧性36.0kJ·m-2.  相似文献   

5.
以N2,CH4作为反应气体,采用微波等离子体化学气相沉积法(MPCVD)进行碳氮膜的合成研究。通过控制反应温度、气体流量、微波功率、反应气压,在Si(111)和Si(100)基底上气相合成β-C3N4晶态薄膜。扫描电子显微镜(SERM)下观察到生长在Si基底上的薄膜具有六角晶棒的密结构。EDX分析胡沉积条件的不同,六角晶棒中N/C在1.0~2.0之间。X射线衍射分析(XRD)发现薄膜中含有β-C3  相似文献   

6.
采用MetalVaporVacuumArc(MEVVA)离子源的离子束合成法,往Si衬底注入剂量为3.0×10^17~1.6×10^18cm^-2的C^+制成SiC埋层,C^+离子束的引出能量为50keV,光电子能谱和红外吸收谱表明SiC埋层的结构特征明显地依赖于剂量,采用MEVVA离子源可以平均衬底温度低于400℃时得到含有立方结构的SiC埋层。  相似文献   

7.
本文报导了非故意掺杂InGaAsSb本底浓度的降低和掺Ten型GaSb和InGaAsSb的MBE生长与特性的研究结果。结果表明,通过生长工艺的优化,GaSb和InGaAsSb的背景空穴浓度可分别降至1.1×10~(16)cm~(-3)和4×10~(16)cm~(-3),室温空穴迁移率分别为940cm2/v.s和260cm~2/v.s。用Te作n型掺杂剂,可获得载流子浓度在10~(16)~10~(18)cm~(-3)的优质GaSb和InGaAsSb外延层,所研制的材料已成功地制备出D_λ~*=4×10~(10)cmHz~(1/2)/W的室温InGaAsSb红外探测器和室温脉冲AlGaAsSb/InGaAsSb双异质结激光器。  相似文献   

8.
用 B2H6和 SiH4作反应气体,通过射频等离子体增强化学气相淀积(RF-PECVD)方法,在 Si(100)面上沉积生长BN薄膜,用S-520扫描电子显微镜对所得薄膜进行观测,并用红外透射光谱测试分析了膜的成分。在室温、压力为 8 × 10-4 Pa条件下,对 BN薄膜的电流一电压特性进行测量,并得到了 Fowler-Nordheim特性曲线,BN膜的场发射开启电场为9 V/μm,在电场37.5 V/μm时,电流密度达到24.8 mA/cm2。  相似文献   

9.
报道了新开发的纳米晶Fe73.5Cu1Nb2V1Si13.5B9合金的综合软磁性能。新合金的高频铁损水平为:P3/100k=510kW·m-3,P2/200k=748kW·m-3,P2/500k=3671kW·m-3和P0.5/1000k=871kW·m-3。新合金的铁损比早期开发的纳米晶Fe-Cu-Nb-Si-B合金的低且明显低于优良的功率Mn-Zn铁氧体H7c4的铁损。对铁损与频率和幅值磁通密度的关系进行了分析。也报道了新合金在若干方面的实际应用。  相似文献   

10.
本文用GSMBE技术生长纯度GaAs和δ-掺杂GaAs/Al_xGa_(1-x)As结构二维电子气材料并对其电学性能进行了研究。对于纯度GaAs的GSMBE生长和研究,在低掺Si时,载流子浓度为2×10~(14)cm~(-3),77K时的迁移率可达84,000cm~2/V.s。对于用GSMBE技术生长的δ-掺杂GaAs/Al_xGa_(1-x)As二维电子气材料,在优化了材料结构和生长工艺后,得到了液氮温度和6K迁移率分别为173,583cm~2/V.5和7.67×10~5cm~2/V.s的高质量GaAs/Al_xGa_(1-x)As二维电子气材料。  相似文献   

11.
GaN films were grown on (1 1 1) Si substrates at 1000 °C by separate admittances of trimethylgallium (TMG) and ammonia (NH3). To achieve high quality GaN films, the optimization in growth temperature and layer thickness of AlN buffer layer between GaN film and Si substrate is required. Cross-sectional transmission electron microscopic observations of the GaN/(1 1 1)Si samples show a nearly parallel orientation relationship between the (0 0 0 1) planes of GaN film and the (1 1 1) planes of Si substrate. Room temperature photoluminescence spectra of high quality GaN films show a strong near band edge emission and a weak yellow luminescence. The achievement of high quality GaN films on (1 1 1) Si substrates is believed to be attributed to enhancement in surface mobilities of the adsorbed surface species and adequate accommodation of lattice mismatch between high temperature AlN buffer layer and Si substrate.  相似文献   

12.
Preparation of AlN thin films by nitridation of Al-coated Si substrate   总被引:1,自引:0,他引:1  
AlN thin films have been grown on Al-coated Si(100) and Si(111) substrates by using nitridation in high-purity nitrogen ambient, where the Al layer was previously deposited on Si by ultra-high vacuum (UHV) electron beam evaporation. The temperature of nitridation was found to play an important role in the formation of AlN films. XRD results showed AlN films formed by nitridation at 1000°C for 30 min exhibited good crystallinity with the preferred orientation of (002) for both Si(111) and Si(100) cases. Other analysis techniques, like Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy have been used to evidence the formation and purity of the AlN films. Scanning electron microscope observations of the films revealed a closely-packed granular texture.  相似文献   

13.
The crystal orientation and residual stress of AlN thin films were investigated using X-ray diffraction and substrate curvature method. The AlN films were deposited on Si(100) by RF magnetron sputtering in a mixed plasma of argon and nitrogen under various substrate negative bias Vs (up to − 100 V) and deposition temperature Ts up to 800 °C. The results show that lower temperature and moderate bias favor the formation of (002) plane parallel to the substrate surface. On the contrary, strong biasing beyond − 75 V and deposition temperature higher than 400 °C lead to the growth of (100) plane. At the same time nanoindentation hardness and compressive stress measured by substrate curvature method showed significant enhancement with substrate bias and temperature. The biased samples develop compressive stress while unbiased samples exhibit tensile or compressive stress depending on plasma power and temperature. The relationships between deposition conditions and crystallographic orientation of the films are discussed in terms of surface energy minimization and ion bombardment effects.  相似文献   

14.
AlN/TiN bilayers were deposited on Si(100) substrates with varying laser pulse energy by laser molecular beam epitaxy (LMBE) technique, and their growth mode, crystal structure and optical properties were investigated. The results indicated that atomically flat TiN single films and AlN/TiN bilayers with layer-by-layer growth mode were successfully grown on Si(100) substrates at optimal laser pulse energy. Both TiN and AlN in the grown bilayers exhibited the NaCl-type cubic structure with the same (200) preferred orientation, showing an excellent epitaxial relationship. TiN single film was more reflective in the infrared range and presented a small transparent window centered at wavelength of 404 nm. Reflectance spectrum of AlN film on top of TiN indicated the sharp absorption at about 246 nm, yielding a bandgap energy of 5.04 eV comparable to the theoretical calculation of bulk cubic AlN, but scarcely reported by the experimental data.  相似文献   

15.
A parametric study of AlN thin films grown by pulsed laser deposition   总被引:1,自引:0,他引:1  
High quality AlN thin films were grown at 200–450°C on sapphire substrates by laser ablation of Al targets in nitrogen reactive atmosphere. The nitrogen pressure was varied between 10−3 and 10−1 mbar. The reactive gas pressure during irradiation and the temperature of the substrate were found to essentially influence the quality of the layers. X-ray diffraction analysis evidenced the formation of highly orientated layers for a very restrictive set of parameters. Other analysis techniques, like X-ray photoelectron spectroscopy, secondary ion mass spectroscopy, optical transmission spectroscopy have been used to evidence the good stoichiometry and purity of the films. The characteristics of these films were compared with those of AlN thin films deposited in similar experimental conditions, on Si (100) and Si (111) substrates.  相似文献   

16.
The dielectric properties and electrical conductivity of AlN films deposited by laser-induced chemical vapour deposition (LCVD) are studied for a range of growth conditions. The static dielectric constant is 8.0 ± 0.2 over the frequency range 102−107 Hz and breakdown electric fields better than 106 V cm−1 are found for all films grown at temperatures above 130°C. The resistivity of the films grown under optimum conditions (substrate temperature above 170°C, NH3/TMA flow rate ratio greater than 300 and a deposition pressure of 1–2 Torr) is about 1014 Ω cm and two conduction mechanisms can be identified. At low fields, F < 5 × 105 V cm−1 and conductivity is ohmic with a temperature dependence showing a thermal activation energy of 50–100 meV, compatible with the presumed shallow donor-like states. At high fields, F > 1 × 106 V cm−1, a Poole-Frenkel (field-induced emission) process dominates, with electrons activated from traps at about 0.7–1.2 eV below the conduction band edge. A trap in this depth region is well-known in AlN. At fields between 4 and 7 × 105 V cm−1 both conduction paths contribute significantly. The degradation of properties under non-ideal growth conditions of low temperature or low precursor V/III ratio is described.  相似文献   

17.
Aluminum nitride (AlN) films were deposited on a variety of substrates (glass, Si, oxidized Si, Al-SiO2-Si, Cr-SiO2-Si, and Au-Cr-SiO2-Si) by radio frequency (RF) magnetron sputtering using an AlN target. The films were deposited without external substrate heating. The effect of RF power, ambient gas (Ar and Ar-N2) and sputtering pressure on deposition rate and crystallinity were investigated. The structure and morphology of the films were studied by X-ray diffraction, scanning electron microscopy and atomic force microscopy techniques. These investigations revealed that the AlN films prepared in mixed gas ambient (Ar-N2) were highly c-axis oriented with moderate surface roughness on all the substrate. A strong IR absorption band was observed around 670 cm− 1 which confirms the presence of Al-N bond in the film. The dc resistivity of the films was measured to be in the range of 1011 to 1012 Ω-cm at moderate electric fields. The application of these films in piezoelectric based micro-electro-mechanical systems is discussed.  相似文献   

18.
The c-axis-oriented aluminum nitride (AlN) films were deposited on z-cut lithium niobate (LiNbO3) substrates by reactive RF magnetron sputtering. The crystalline orientation of the AlN film determined by x-ray diffraction (XRD) was found to be dependent on the deposition conditions such as substrate temperature, N2 concentration, and sputtering pressure. Highly c-axis-oriented AlN films to fabricate the AlN/LiNbO3-based surface acoustic wave (SAW) devices were obtained under a sputtering pressure of 3.5 mTorr, N2 concentration of 60%, RF power of 165 W, and substrate temperature of 400°C. A dense pebble-like surface texture of c-axis-oriented AlN film was obtained by scanning electron microscopy (SEM). The phase velocity and the electromechanical coupling coefficient (K2) of SAW were measured to be about 4200 m/s and 1.5%, respectively. The temperature coefficient of frequency (TCF) of SAW was calculated to be about -66 ppm/°C  相似文献   

19.
We have investigated the influence of tantalum (Ta) bottom electrodes on the crystallinity and crystal orientation of aluminum nitride (AlN) thin films. AlN thin films and Ta electrodes were prepared by using rf magnetron sputtering method. The crystal structure of the Ta electrodes was tetragonal (β-Ta, a metastable phase) at room temperature. The crystallinity and orientation of the AlN thin films and Ta electrodes strongly depended on sputtering conditions. Especially, the crystallinity and crystal orientation of the Ta electrodes were influenced by their film thickness and the substrate temperature. When the thickness of the Ta bottom electrodes was 200 nm and the substrate temperature was 100 °C, the AlN thin films indicated high c-axis orientation (the full width at half maximum of rocking curve of 3.9°). The crystal orientation of the AlN film was comparable to that of AlN thin films deposited on face centered cubic (fcc) lattice structure metal, such as Au, Pt and Al, bottom electrodes.  相似文献   

20.
AlN thin films for acoustic wave devices were prepared by Microwave Plasma Enhanced Chemical Vapor Deposition under different process conditions, employing Si (100) and Pt (111)/SiO2/Si (100) substrates. The films were characterized by X-ray diffraction, Fourier transform infrared transmission spectroscopy, atomic force microscopy, scanning electron microscopy, and transmission electron microscopy. The values of the distance between the plasma and the tri-methyl-aluminum precursor injector, the radiofrequency bias potential, and the substrate temperature were central in the development of polycrystalline films. The choice of the chamber total pressure during deposition allowed for the development of two different crystallographic orientations, i.e., <0001> or <1010>. The film microstructures exhibited in general a column-like growth with rounded tops, an average grain size of about 40 nm, and a surface roughness lower than 20 nm under the best conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号