首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A crossover design trial with 4 ruminally and duodenally cannulated lactating dairy cows was conducted to study the effect of sodium laurate on ruminal fermentation, nutrient digestibility, and milk yield and composition. The daily dose of sodium laurate (0, control or 240 g/cow, LA) was divided in 2 equal portions and introduced directly into the rumen through the cannula before feedings. Ruminal samples (29 in 114 h) were analyzed for fermentation variables and protozoal counts. Sodium laurate had no effect on ruminal pH and total and individual volatile fatty acids concentrations. Ruminal ammonia concentration, ammonia N pool size, and the irreversible loss of ammonia N were unaffected by treatment. Compared to control, protozoal counts were reduced by 91% by LA. Carboxymethylcellulase and xylanase activities of ruminal fluid were decreased (by 40 and 36%, respectively), and amylase activity was not affected by LA compared with control. Flow of microbial N to the duodenum was reduced by LA. Dry matter intake and apparent total tract digestibility of dry matter, organic matter, crude protein, neutral detergent fiber, and acid detergent fiber were not different between the 2 treatments. Milk yield, fat-corrected milk yield, milk fat and protein concentrations and yields, and milk urea N content were not affected by treatment. Sodium laurate did not affect transfer of ruminal ammonia-15N into bacterial or milk protein. In conclusion, LA at approximately 0.3% of the rumen weight reduced ruminal protozoal population and had a negative effect on fibrolytic activities of ruminal fluid and microbial protein flow to the intestine. Treatment had no other significant effects on ruminal fermentation, total tract digestibility, or transfer of ruminal ammonia-15N into milk protein.  相似文献   

2.
Eight multiparous Holstein cows (676 ± 57 kg of body weight; 121 ± 17 d-in-milk) were used in a replicated 4 × 4 Latin square design to determine the effects of 4 sources of carbohydrate on milk yield and composition, ruminal fermentation, and microbial N flow to the duodenum. Four cows in one of the Latin squares were fitted with permanent ruminal cannulae. Diets contained (DM basis) 50% forage in combinations of alfalfa hay and barley silage, and 50% concentrate. The concentrate portion of the diets contained barley, corn, wheat, or oats grain as the primary source of carbohydrate. Intake of DM ranged from 24.0 to 26.2 kg/d, and it tended to be lower in cows fed the wheat-based diet compared with those fed the barley-based diet; consequently, milk yield tended to be lower in cows fed the wheat-based diet compared with those fed the barley-based diet. Cows fed the barley- or wheat-based diets had a lower milk fat content compared with those fed the corn-based diet. Ruminal fermentation characteristics were largely unaffected by the source of dietary carbohydrate, with similar ruminal pH and volatile fatty acid and ammonia concentrations for the first 6 h after the morning feeding. Dietary treatment did not affect total tract apparent digestibility of DM, organic matter, and neutral detergent fiber; however, total tract apparent digestibility of starch in cows fed the oats-based diet was higher compared with those fed the corn-and wheat-based diets. Nitrogen that was used for productive purposes (i.e., N secreted in milk + N apparently retained by the cow) tended to be lower in cows fed the wheat-based diet compared with cows fed the barley-, corn-, or oats-based diets. Urinary purine derivative (PD) excretion was similar in cows fed the barley-, corn-, and wheat-based diets; however, purine derivative excretion was higher in cows fed the barley-based diet compared with those fed the oats-based diet. Consequently, estimated microbial N flow to the duodenum was 49 g/d higher in cows fed the barley-based diet compared with those fed the oats-based diet. Improved production performance with corn and barley diets appeared to be due to greater nutrient absorption than in cows fed oats and wheat diets, rather than improved nutrient utilization efficiency.  相似文献   

3.
The objective of the current study was to investigate the effect of N-carbamoylglutamate (NCG) supplementation on milk production and nitrogen (N) utilization in Chinese Holstein dairy cows. Sixty multiparous cows (78 ± 17.3 d in milk, 635 ± 61.00 kg of body weight, and 41.9 ± 7.9 kg/d milk yield; mean ± SD) were blocked by parity, days in milk, and milk yield and randomly allocated to 1 of 4 groups, each of which was fed a dietary treatment containing 0 (control), 10, 20, or 30 g of NCG/d. Milk yield was recorded weekly. Dry matter intake, milk composition, plasma variables, and urea N contents in plasma, urine, and milk were determined every other week. Blood samples were collected from the coccygeal vein. Rumen microbial protein synthesis was estimated based on the purine derivatives in the urine. Dry matter intake was found to be similar between the treatments. Addition of 20 g of NCG/d tended to increase milk yield (40.2 vs. 38.1 kg/d) and increased the content (2.83 vs. 2.74%) and yield (1.12 vs. 1.02 kg/d) of milk protein compared with the control. The yield and content of milk fat were similar between the treatments, whereas the contents of lactose and total solids increased linearly with an increase in NCG. Dietary supplementation of NCG linearly increased the plasma nitric oxide level and decreased the plasma ammonia N level. Compared with the control, the plasma Arg concentration in cows fed 10, 20, and 30 g of NCG/d was increased by 1.1, 10.4, and 16.0%, respectively. The urea N concentrations in the milk, plasma, and urine decreased with the addition of NCG, although the lowest urea N concentrations were observed with the addition of 20 g of NCG/d. The conversion of dietary crude protein to milk protein exhibited quadratic trends of improvement by NCG supplementation, with a peak at 20 g of NCG/d. The rumen microbial protein synthesis was not altered by NCG supplementation, but the metabolizable protein tended to show a quadratic increase in cows fed 20 g of NCG/d. In conclusion, supplementation of 20 g of NVG/d may alter the plasma metabolites, optimize the AA profile, increase the metabolizable protein utilization, and thereby improve the lactation performance and N utilization of high-yielding dairy cows.  相似文献   

4.
The objective of this study was to investigate the effect of metabolizable protein (MP) deficiency and coconut oil supplementation on N utilization and production in lactating dairy cows. The hypothesis of the study was that a decrease in ruminal protozoal counts with coconut oil would increase microbial protein synthesis in the rumen, thus compensating for potential MP deficiency. The experiment was conducted for 10 wk with 36 cows (13 primiparous and 23 multiparous), including 6 ruminally cannulated cows. The experimental period, 6 wk, was preceded by 2-wk adaptation and 2-wk covariate periods. Cows were blocked by parity, days in milk, milk yield, and rumen cannulation and randomly assigned to one of the following diets: a diet with a positive MP balance (+44 g/d) and 16.7% dietary crude protein (CP) concentration (AMP); a diet deficient in MP (−156 g/d) and 14.8% CP concentration (DMP); or DMP supplemented with approximately 500 g of coconut oil/head per day (DMPCO). Ruminal ammonia tended to be greater and plasma urea N (20.1, 12.8, and 13.1 mg/dL, for AMP, DMP, and DMPCO diets, respectively) and milk urea N (12.5, 8.3, and 9.5 mg/dL, respectively) were greater for AMP compared with DMP and DMPCO. The DMPCO diet decreased total protozoa counts (by 60%) compared with DMP, but had no effect on the methanogens profile in the rumen. Total tract apparent digestibility of dry matter and CP was decreased by DMP compared with AMP. Fiber digestibility was lower for both DMP and DMPCO compared with AMP. Urinary N excretion was decreased (by 37%) by both DMP and DMPCO compared with AMP. The DMP and DMPCO diets resulted in greater milk N efficiency compared with AMP (32.0 and 35.1 vs. 27.6%, respectively). Milk yield was decreased by both DMP and DMPCO compared with AMP (36.2, 34.4, and 39.3 kg/d, respectively) and coconut oil supplementation suppressed feed intake and caused milk fat depression. Coconut oil supplementation decreased short-chain fatty acid (C4:0, C6:0, and C8:0) concentration and increased medium-chain (C12:0 and C14:0) and total trans fatty acids in milk. Overall, the MP-deficient diets decreased N losses, but could not sustain milk production in this study. Coconut oil decreased feed intake and similar to DMP, suppressed fiber digestibility. Despite decreased protozoal counts, coconut oil had no effect on the methanogen population in the rumen.  相似文献   

5.
An experiment was conducted to quantify the effects of incremental levels of heat-moisture-treated canola meal (TCM) fed to dairy cows on the relationship between ruminal nutrient digestion and milk production. Experimental diets were fed to 4 multiparous rumen-cannulated Nordic Red cows, averaging (mean ± standard deviation) 681 ± 54.8 kg of body weight, 111 ± 16 d in milk, and 29.1 ± 9.1 kg of milk/d at the start of the study, in a Latin square design with four 21-d periods. The 4 experimental dietary treatments consisted of a basal diet of grass silage and crimped barley, and 3 diets in which the crimped barley was replaced with TCM, giving 3 incremental levels of protein supplementation. Nutrient flow was quantified by the omasal sampling technique using 3 markers (Cr, Yb, and indigestible neutral detergent fiber). Continuous infusion of 15N was used to label bacterial crude protein. Additionally, ruminal sampling and evacuations and measurements of total-tract digestibility were conducted. The experimental diets provided 132, 148, 164, and 180 g of crude protein/kg of dry matter. The increased level of TCM linearly increased dry matter intake from 15.1 to 16.6 kg/d and energy-corrected milk yield from 21.0 to 25.6 kg/d. The increased proportion of TCM when substituting barley with TCM was associated with greater total-tract digestibility of neutral detergent fiber and potentially digestible neutral detergent fiber, which could be explained by increased digestion rate of potentially digestible neutral detergent fiber. Omasal flow of nonammonia N naturally increased with greater dietary TCM inclusion, but the increased intestinal supply of rumen-undegradable protein was partly offset by diminished microbial protein synthesis when feeding more TCM. This was also reflected in a decreased proportion of milk protein from ruminal bacterial protein when TCM supplementation increased.  相似文献   

6.
Three experiments (Exp.) were conducted to study the effects of dietary addition of an essential oil product (EO) based on eugenol and cinnamaldehyde (0, control, or 525 mg/d of Xtract 6965; Pancosma SA, Geneva, Switzerland) on ruminal fermentation, total-tract digestibility, manure gas emissions, N losses, and dairy cow performance. In Exp. 1 and 3, the EO supplement was added to the vitamin-mineral premix. In Exp. 2, EO was top-dressed. Experiments 1 and 2 were crossover designs with 20 multiparous Holstein cows each (including 4 and 8 ruminally cannulated cows, respectively) and consisted of two 28-d periods. Intake of dry matter did not differ between treatments. Most ruminal fermentation parameters were unaffected by EO. Concentrations of ammonia (Exp. 1), isobutyrate (Exp. 1 and 2), and isovalerate (Exp. 1) were increased by EO compared with the control. Apparent total-tract digestibility of nutrients was similar between treatments, except total-tract digestibility of neutral-detergent fiber, which was increased or tended to be increased by EO in Exp. 1 and 2. Manure emissions of ammonia and methane were unaffected by EO. Blood plasma and milk urea-N concentrations and urinary N losses were increased by EO compared with the control in Exp. 1, but not in Exp. 2. Average milk yield, 3.5% fat-corrected milk yield, and milk fat, protein, and lactose concentrations were unaffected by treatment. Urinary excretion of purine derivatives, a marker for microbial protein production in the rumen, was greater in cows receiving the EO diet in Exp. 1, but not in Exp. 2. In Exp. 3, 120 Holstein cows were grouped in pens of 20 cows/pen in a 12-wk experiment to study production effects of EO. Dry matter intake, milk yield (a trend for a slight decrease with EO), milk components, milk urea N, and feed efficiency were similar between treatments. Results from these studies indicate that supplementing dairy cows with 525 mg/d of Xtract 6965 had moderate effects on ruminal fermentation, but consistently increased ruminal isobutyrate concentration and tended to increase total-tract digestibility of neutral-detergent fiber. Under the conditions of these experiments, Xtract 6965 fed at 525 mg/d did not affect milk production or composition.  相似文献   

7.
This study investigated the effect of 2 different types of long-acting insulin on milk production, milk composition, and metabolism in lactating dairy cows. Multiparous cows (n = 30) averaging 88 d in milk were assigned to one of 3 treatments in a completely randomized design. Treatments consisted of control (C), Humulin-N (H; Eli Lilly and Company, Indianapolis, IN), and insulin glargine (L). The H and L treatments were administered twice daily at 12-h intervals via subcutaneous injection for 10 d. Cows were milked twice daily, and milk composition was determined every other day. Mammary biopsies were conducted on d 11, and mammary proteins extracted from the biopsies were analyzed by Western blot for components of insulin and mammalian target of rapamycin signaling pathways. Treatment had no effect on dry matter intake or milk yield. Treatment with both forms of long-acting insulin increased milk protein content and tended to increase milk protein yield over the 10-d treatment period. Analysis of milk N fractions from samples collected on d 10 of treatment suggested that cows administered L tended to have higher yields of milk protein fractions than cows administered H. Milk fat content and yield tended to be increased for cows administered long-acting insulins. Lactose content and yields were decreased by treatment with long-acting insulins. Administration of long-acting insulins, particularly L, tended to shift milk fatty acid composition toward increased short- and medium-chain fatty acids and decreased long-chain fatty acids. Plasma concentrations of glucose and urea N were lower for cows administered long-acting insulins; interactions of treatment and sampling time were indicative of more pronounced effects of L than H on these metabolites. Concentrations of nonesterified fatty acids and insulin were increased in cows administered long-acting insulins. Decreased concentrations of urea N in both plasma and milk suggested more efficient use of N in cows administered long-acting insulins. Western blot analysis of mammary tissue collected by biopsy indicated that the ratios of phosphorylated protein kinase b (Akt) to total Akt and phosphorylated ribosomal protein S6 (rpS6) to total rpS6 were not affected by long-acting insulins. Modestly elevating insulin activity in lactating dairy cows using long-acting insulins altered milk composition and metabolism. Future research should explore mechanisms by which either insulin concentrations or insulin signaling pathways in the mammary gland can be altered to enhance milk fat and protein production.  相似文献   

8.
The objective was to study the interaction effects of rumen nitrogen balance (RNB) and dietary protein source on feed intake, apparent total-tract digestibility (ATTD), eating and ruminating activity, milk yield (MY), and milk composition in lactating dairy cows. Twenty-four lactating Holstein cows were divided in 4 groups, which were randomly assigned to the dietary treatments included in a replicated 4 × 4 Latin square experimental design that consisted of four 20-d periods, each with 12 d of adaptation to the experimental diets and 8 d of sampling. The dietary treatments followed a 2 × 2 factorial arrangement with 2 main protein sources, faba bean grain (FB) and SoyPass (SP; Beweka Kraftfutterwerk GmbH), offered at 2 dietary RNB levels: RNB0 (RNB of 0 g/kg of dry matter) and RNB? (RNB of –3.2 g/kg of dry matter; i.e., 4 treatments). The composition of concentrate mixtures was adjusted to create diets with the desired RNB levels. Each of the protein sources supplied ≥35% of the total dietary crude protein (CP). Both diets within a protein source had similar forage sources and forage to concentrate ratios and were iso-energetic, but differed in CP concentrations. The main effects of RNB, protein source, and their interactions were tested by PROC MIXED in SAS 9.4 (SAS Institute Inc.). Interaction effects were observed for daily dry matter intake and energy-corrected MY, which were lower for RNB? than RNB0 in diets containing FB (23.5 vs. 24.4 kg dry matter/d; 28.6 vs. 30.6 kg milk/d), but similar in diets containing SP (24.2 vs. 24.3 kg dry matter/d; 31.3 vs. 31.7 kg milk/d). The ATTD of NDF was lower for RNB? compared with RNB0 in the FB (44.9 vs. 49.1 g/100 g) and SP (48.5 vs. 51.9 g/100 g) diets, and greater for the SP than for FB diets. There were interaction effects for ATTD of CP and concentrations of milk urea nitrogen, which were lower for RNB? compared with RNB0 in both, FB (55 vs. 63.1 g/100 g of CP; 5.65 vs. 11.3 mg/dL milk) and SP diets (60 vs. 64.4 g/100 g of CP; 8.74 vs. 13.4 mg/dL milk). However, differences between RNB levels were greater for FB than for SP diets. Furthermore, proportions of milk fatty acids followed the same pattern as that of dietary fatty acids, but biohydrogenation appeared to be greater for RNB? than RNB0 for both protein sources and in FB than in SP diets for both RNB levels. There was an interaction effect on total number of chews per unit of NDF intake, which was greater for RNB? compared with RNB0 for both protein sources. However, the differences between RNB levels were greater in FB than in SP diets. Overall, differences in the animal responses to negative RNB between FB and SP diets suggest a need to better understand the effect of negative RNB levels with different dietary ingredients at similar utilizable CP supply.  相似文献   

9.
Changing the composition of milk proteins and AA affects the nutritional and physical properties of dairy products. Intravenous infusions of glucagon decreases milk protein production and concentration by promoting the use of gluconeogenic blood AA for hepatic glucose synthesis. Little is known about how the diversion of AA to gluconeogenesis affects the composition of milk proteins and AA. The objective was to quantify changes in composition of milk protein and AA in response to i.v. glucagon infusions. Three separate experiments were used: 1) 8 Holstein cows were fed ad libitum and infused with glucagon at 10 mg/d for 14 d, 2) 7 Holstein cows were feed restricted and infused with glucagon at 10 mg/d for 14 d, and 3) 4 Brown Swiss cows were infused with glucagon at 5 and 10 mg/d for 2 d each. Milk and milk component yields and milk protein and amino acid composition of samples, collected with blood samples at the first and last day of the glucagon infusion period, were compared with those collected 1 d before and after the glucagon infusion period. Glucagon infusions decreased milk protein production and concentration in each experiment by at least 0.2 ± 0.05 kg/d and 4 ± 0.4 g/L, respectively. The decrease was accompanied by changes in milk protein composition, the most consistent being an increase in κ-casein (1.68 ± 0.27%). Overall, glucagon infusions resulted in higher proportions of κ-casein and αS2-casein (1.34 ± 0.51%) and smaller proportions of αS1-casein (−3.83 ± 1.75%) and α-lactalbumin (−0.91 ± 0.32%). Glucagon had little impact on milk AA composition except an increase in glycine (0.26 ± 0.11%). The results suggest that milk protein synthesis is regulated by many factors including AA and glucose availability.  相似文献   

10.
Effects of forage source, concentration of metabolizable protein (MP), and type of carbohydrate on manure excretion by dairy cows and production of ammonia from that manure were evaluated using a central composite experimental design. All diets (dry basis) contained 50% forage that ranged from 25:75 to 75:25 alfalfa silage:corn silage. Diets contained 10.7% rumendegradable protein with variable concentrations of undegradable protein so that dietary MP ranged from 8.8 to 12%. Starch concentration ranged from 22 to 30% with a concomitant decrease in neutral detergent fiber. A total of 15 diets were fed to 36 Holstein cows grouped in 6 blocks. Each block was a replicated 3 × 3 Latin square resulting in 108 observations. Manure output (urine and feces) was measured using total collection, and fresh feces and urine were combined into slurries and incubated for 48 h to measure NH3-N production. Feces, urine, and manure output averaged 50.5, 29.5, and 80.1 kg/d, respectively. Manure output increased with increasing dry matter intake (∼3.5 kg of manure/kg of dry matter intake), increased concentrations of alfalfa (mostly via changes in urine output), and decreased concentrations of starch (mostly via changes in fecal output). The amount of NH3-N produced per gram of manure decreased with increasing alfalfa because excreted N shifted from urine to feces. Increasing MP increased NH3-N produced per gram of manure mainly because of increased urinary N, but increased fecal N also contributed to the manure NH3. Manure NH3-N production per cow (accounts for effects on manure production and NH3-N produced per unit of manure) was least and milk protein yields were maximal for diets with high alfalfa (75% of the forage), moderate MP (11% of diet dry matter), and high starch (30% of diet dry matter).  相似文献   

11.
The main objective of this experiment was to examine the effects of the percentage and source of crude protein (CP) and the amount of starch in the diet of dairy cows on the lactational performance and use of N for milk production. Sixty multiparous Holstein cows were used in a 210-d lactational trial with a completely randomized design with a 2 × 3 factorial arrangement of treatments. Two sources of CP [solvent-extracted soybean meal (SBM) and a mixture of SBM and a blend of animal-marine protein supplements plus ruminally protected Met (AMB)] and 3 levels of dietary CP (means = 14.8, 16.8, and 18.7%) were combined into 6 treatments. On a dry matter (DM) basis, diets contained 25.0% corn silage, 20.0% alfalfa silage, 10.0% cottonseed, 26.7 to 37.0% corn grain, and 4.8 to 13.5% protein supplement, plus minerals and vitamins. Across the 210 d of lactation, the productive response of dairy cows to the source of supplemental CP depended on the concentration of CP in the diet. At 18.7% CP, cows fed SBM consumed more DM and produced more milk, 3.5% fat-corrected milk, fat, and true protein, but had lower efficiency of feed use and body condition score than cows fed AMB. At 16.8% CP, cows fed AMB produced more 3.5% fat-corrected milk, fat, and true protein than cows fed SBM. At 14.8% CP, cows fed SBM consumed more DM but produced less true protein and had lower feed efficiency than cows fed AMB. Across CP sources, cows fed 14.8% CP produced less fat-corrected milk and true protein than cows fed 16.8 and 18.7% CP. Across CP percentages, cows fed AMB produced more fat-corrected milk per kilogram of DM consumed than cows fed SBM. Despite these interactions, improvements in the gross efficiency of N use for milk production were achieved through reductions in the intake of N independently of the source of CP. Data suggest that the intake of N by high-producing dairy cows that consume sufficient energy and other nutrients to meet their requirements can be decreased to about 600 to 650 g daily if the source of RDP and RUP are properly matched with the source and amount of carbohydrate in the diet.  相似文献   

12.
Feed management is one of the principal levers by which the production and composition of milk by dairy cows can be modulated in the short term. The response of milk yield and milk composition to variations in either energy or protein supplies is well known. However, in practice, dietary supplies of energy and protein vary simultaneously, and their interaction is still not well understood. The objective of this trial was to determine whether energy and protein interacted in their effects on milk production and milk composition and whether the response to changes in the diets depended on the parity and potential production of cows. From the results, a model was built to predict the response of milk yield and milk composition to simultaneous variations in energy and protein supplies relative to requirements of cows. Nine treatments, defined by their energy and protein supplies, were applied to 48 cows divided into 4 homogeneous groups (primiparous or multiparous × high or low milk potential) over three 4-wk periods. The control treatment was calculated to cover the predicted requirements of the group of cows in the middle of the trial and was applied to each cow. The other 8 treatments corresponded to fixed supplies of energy and protein, higher or lower than those of the control treatment. The results highlighted a significant energy × protein interaction not only on milk yield but also on protein content and yield. The response of milk yield to energy supply was zero with a negative protein balance and increased with protein supply equal to or higher than requirements. The response of milk yield to changes in the diet was greater for cows with high production potential than for those with low production potential, and the response of milk protein content was higher for primiparous cows than for multiparous cows. The model for the response of milk yield, protein yield, and protein content obtained in this trial made it possible to predict more accurately the variations in production and composition of milk relative to the potential of the cow because of changes in diet composition. In addition, the interaction obtained was in line with a response corresponding to the more limiting of 2 factors: energy or protein.  相似文献   

13.
Sixteen multiparous lactating Holstein cows (four with rumen cannulae) were fed diets varying in the content and form of ruminally degradable carbohydrates and N to examine dietary effects on microbial protein synthesis (MPS) and whole animal N efficiency, and to evaluate the use of a model based on milk urea N (MUN) for predicting urinary N excretion and N utilization efficiency (NUE). A replicated Latin square design (consisting of diet and experimental period) was employed. The four diets consisted of two low protein diets with either 20% ground corn (diet LP) or 13.5% ground corn plus 3% sucrose (diet LP sucrose) and two high protein diets with 13.5% corn and 3% sucrose with either urea (diet HP urea) or soybean meal (diet HP SBM) as supplemental rumen-degradable protein sources. The intakes of dry matter and N were increased by increasing dietary crude protein (CP) level. However, the yields of milk and milk protein were not affected by CP level. Yield of microbial protein was reduced by sucrose and increased by CP level. There were no differences between urea and SBM supplementation on DM intake, milk yield, or MPS. Mean urinary N excretion for all cows (252 g/d) was underestimated by 55 g/d or overestimated by 25 or 33 g/d using alternative equations based on MUN. Subsequently, NUE (mean = 22.4%) was underestimated by 7.5, 3.2, or 2.9%, using a previously published set of equations. Urinary N excretion and NUE could be predicted within 10 and 14% of observed values, respectively, using a set of equations incorporating MUN. Therefore, MUN appears to be a useful tool to help assess N losses from lactating cows.  相似文献   

14.
Forty lactating Holstein cows, including 10 with ruminal cannulas, were blocked by days in milk into 8 groups and then randomly assigned to 1 of 8 incomplete 5 × 5 Latin squares to assess the effects of 5 levels of dietary crude protein (CP) on milk production and N use. Diets contained 25% alfalfa silage, 25% corn silage, and 50% concentrate, on a dry matter (DM) basis. Rolled high-moisture shelled corn was replaced with solvent-extracted soybean meal to increase CP from 13.5 to 15.0, 16.5, 17.9, and 19.4% of DM. Each of the 4 experimental periods lasted 28 d, with 14 d for adaptation and 14 d for data collection. Spot sampling of ruminal digesta, blood, urine, and feces was conducted on d 21 of each period. Intake of DM was not affected by diet but milk fat content as well as ruminal acetate, NH3, and branched-chain volatile fatty acids, urinary allantoin, and blood and milk urea all increased linearly with increasing CP. Milk and protein yield showed trends for quadratic responses to dietary CP and were, respectively, 38.3 and 1.18 kg/d at 16.5% CP. As a proportion of N intake, urinary N excretion increased from 23.8 to 36.2%, whereas N secreted in milk decreased from 36.5 to 25.4%, as dietary protein increased from 13.5 to 19.4%. Under the conditions of this study, yield of milk and protein were not increased by feeding more than 16.5% CP. The linear increase in urinary N excretion resulted from a sharp decline in N efficiency as dietary CP content increased.  相似文献   

15.
The objective of this study was to determine the effects of supplementation of protein deficient diet with increasing amounts of urea-N on feed intake, milk yield, rumen fermentation, and nutrient digestibility in dairy cows. The hypothesis was that low rumen ammonia-N concentrations provide suboptimal conditions for rumen microbes and these conditions can be alleviated by urea-N that increases rumen ammonia-N concentrations. To evaluate this hypothesis, the diet was formulated slightly deficient with respect to rumen-degradable protein. To supplement the diet with rumen degradable N, 5 levels of urea-N (0, 17, 33, 49, and 66 g/d) were continuously infused into the rumen of 5 dairy cows according to a 5 × 5 Latin square. Increasing levels of urea-N infusion increased N intake and N excretion in urine and feces in a linear manner and tended to increase milk and milk protein yields. Feed intake and fiber digestibility were not affected by urea-N infusion levels. Rumen ammonia-N concentrations remained low (3.5 mg/100 mL) and did not respond to urea-N infusions levels between 0 to 49 g/d, whereas the highest level of urea-N (66 g/d) increased rumen ammonia-N concentration to 5.1 mg/100 mL (quadratic effect). These observations suggested that rumen microbes efficiently captured ammonia-N from rumen fluid until sufficient intracellular ammonia-N concentrations were attained, after which ammonia-N concentrations started to increase in extracellular rumen fluid. In contrast, milk urea-N concentrations increased in a curvilinear manner (cubic effect) from 4.4 to around 6 mg/100 mL for the medium levels of urea-N and then to 7.9 mg/100 mL for the highest level of urea-N infusion. The current results indicated that 18% of supplementary N intake was secreted in milk and 53% in urine. In spite of low rumen ammonia-N concentrations observed for the basal diet, it was estimated that only 43% of supplementary N was captured by rumen microbes. Estimated true digestibility for supplementary N (93%) provided further evidence that urea-N stimulated microbial N synthesis. The current results indicate that rumen ammonia-N concentration was an insensitive indicator of N deficiency at low levels of diet CP, whereas milk urea-N was responsive to diet CP concentrations at all urea-N infusion levels.  相似文献   

16.
The aim was to study the effects of rumen N balance (RNB), dietary protein source, and their interaction on feed intake, N partitioning, and rumen microbial crude protein (MCP) synthesis in lactating dairy cows. Twenty-four lactating Holstein cows were included in a replicated 4 × 4 Latin square experimental design comprising four 20-d periods, each with 12 d of adaptation to the experimental diets and 8 d of sampling. The dietary treatments followed a 2 × 2 factorial arrangement (i.e., 4 treatments) with 2 main protein sources [faba bean grain (FB) and SoyPass (SP; Beweka Kraftfutterwerk GmbH, Heilbronn, Germany)] offered at 2 dietary RNB levels each [0 g/kg of dry matter, DM (RNB0) and ?3.2 g/kg of DM (RNB?)]. The RNB was calculated as the difference between dietary crude protein (CP) intake and the rumen outflow of undegraded feed CP and MCP and divided by 6.25. Composition of concentrate mixtures was adjusted to create diets with desired RNB levels. Each of these protein sources supplied ≥35% of total dietary CP. Both diets for each protein source were isoenergetic but differed in CP concentrations. The DM intake (kg/d) was lower for RNB? than for RNB0 in diets containing FB, whereas no differences were seen between the RNB levels for SP diets. The RNB? decreased N intake and urinary N excretion but increased milk N use efficiency in both FB and SP diets, with greater differences between the RNB levels for FB diets than for SP diets. Similarly, duodenal MCP synthesis (g/kg of digestible organic matter intake) estimated from purine derivatives in the urine was lower for RNB? than for RNB0 in FB diets but similar between the RNB levels in diets containing SP. Low RNB of approximately ?65 g/d (approximately ?3.2 g/kg of DM) in diets reduced feed intake, N balance, and performance in high-yielding dairy cows with possibly more pronounced effects in diets containing rapidly degradable protein sources.  相似文献   

17.
Diet composition defines the amount and type of nutrients absorbed by dairy cows. Endocrine-metabolic interactions can influence these parameters, and so nutrient availability for the mammary gland can significantly vary and affect milk yield and its composition. Six dairy cows in early and then late lactation received, for 28 d in a changeover design, 2 diets designed to provide, within the same stage of lactation, similar amounts of rumen fermentable material but either high starch plus sugar (HS) content or low starch plus sugar content (LS). All diets had similar dietary crude protein and calculated supply of essential amino acids. Dry matter intake within each stage of lactation was similar between groups. Milk yield was similar between groups in early lactation, whereas a higher milk yield was observed in late lactation when feeding HS. At the metabolic level, the main difference observed between the diets in both stages of lactation was lower blood glucose in cows fed LS. The lower glucose availability during consumption of LS caused substantial modifications in the circulating and postprandial pattern of metabolic hormones. Feeding LS versus HS resulted in an increase in the ratio of bovine somatotropin to insulin. This increased mobilization of lipid reserves resulted in higher blood concentrations of nonesterified fatty acids and β-hydroxybutyrate, which contributed to the higher milk fat content in both stages of lactation in the LS group. This greater recourse to body fat stores was confirmed by the greater loss of body weight during early lactation and the slower recovery of body weight in late lactation in cows fed LS. The lower insulin to glucagon ratio observed in cows fed LS in early and late lactation likely caused an increase in hepatic uptake and catabolism of amino acids, as confirmed by the higher blood urea concentrations. Despite the higher catabolism of amino acids in LS in early lactation, similar milk protein output was observed for both diets, suggesting similar availability of amino acids for peripheral tissue and mammary gland. The latter could be the result of sparing of amino acids at the gut level due to starch that escaped from the rumen, and to the balanced amino acid profile of digestible protein. This last aspect appears worthy of further research, with the aim to enhance the efficiency of protein metabolism of dairy cows, reducing environmental nitrogen pollution without affecting milk yield potential.  相似文献   

18.
Twenty-eight (8 with ruminal cannulas) lactating Holstein cows were assigned to 4 × 4 Latin squares and fed diets with different levels of rumen-degraded protein (RDP) to study the effect of RDP on production and N metabolism. Diets contained [dry matter (DM) basis] 37% corn silage, 13% alfalfa silage, and 50% concentrate. The concentrate contained solvent and lignosulfonate-treated soybean meal and urea, and was adjusted to provide RDP at: 13.2, 12.3, 11.7, and 10.6% of DM in diets A to D, respectively. Intake of DM and yield of milk, fat-corrected milk, and fat were not affected by treatments. Dietary RDP had positive linear effects on milk true protein content and microbial non-ammonia N (NAN) flow at the omasal canal, and a quadratic effect on true protein yield, with maximal protein production at 12.3% RDP. However, dietary RDP had a positive linear effect on total N excretion, with urinary N accounting for most of the increase, and a negative linear effect on environmental N efficiency (kg of milk produced per kg of N excreted). Therefore, a compromise between profitability and environmental quality was achieved at a dietary RDP level of 11.7% of DM. Observed microbial NAN flow and RDP supply were higher and RUP flow was lower than those predicted by the NRC (2001) model. The NRC (2001) model overpredicted production responses to RUP compared with the results in this study. Replacing default NRC degradation rates for protein supplements with rates measured in vivo resulted in similar observed and predicted values, suggesting that in situ degradation rates used by the NRC are slower than apparent rates in this study.  相似文献   

19.
The aim of the study was to compare the effect of fiber- or starch-rich diets based on grass silage, supplemented or not with bicarbonate, on CH4 emissions and milk fatty acid (FA) profile in dairy cows. The experiment was conducted as a 4 × 4 Latin square design with a 2 × 2 factorial arrangement: carbohydrate type [starch- or fiber-rich diets with dietary starch level of 23.1 and 5.9% on a dry matter basis, respectively], without or with bicarbonate addition [0 and 1% of the dry matter intake, respectively]. Four multiparous lactating Holstein cows were fed 4 diets with 42% grass silage, 8% hay, and 50% concentrate in 4 consecutive 4-wk periods: (1) starch-rich diet, (2) starch-rich diet with bicarbonate, (3) fiber-rich diet, and (4) fiber-rich diet with bicarbonate. Intake and milk production were measured daily and milk composition was measured weekly; CH4 emission and total-tract digestibility were measured simultaneously (5 d, wk 4) when animals were in open-circuit respiration chambers. Sensors continuously monitored rumen pH (3 d, wk 4), and fermentation parameters were analyzed from rumen fluid samples taken before feeding (1 d, wk 3). Cows fed starch-rich diets had less CH4 emissions (on average, ?18% in g/d; ?15% in g/kg of dry matter intake; ?19% in g/kg of milk) compared with fiber-rich diets. Carbohydrate type did not affect digestion of nutrients, except starch, which increased with starch-rich diets. The decrease in rumen protozoa number (?36%) and the shift in rumen fermentation toward propionate at the expense of butyrate for cows fed the starch-rich diets may be the main factor in reducing CH4 emissions. Milk of cows fed starch-rich diets had lower concentrations in trans-11 C18:1, sum of cis-C18, cis-9,trans-11 conjugated linoleic acid (CLA), and sum of CLA, along with greater concentration of some minor isomers of CLA and saturated FA in comparison to the fiber-rich diet. Bicarbonate addition did not influence CH4 emissions or nutrient digestibility regardless of the carbohydrate type in the diet. Rumen pH increased with bicarbonate addition, whereas other rumen parameters and milk FA composition were almost comparable between diets. Feeding dairy cows a starch-rich diet based on grass silage helps to limit the negative environmental effect of ruminants, but does not lead to greater milk nutritional value because milk saturated FA content is increased.  相似文献   

20.
The objective of this study was to measure cow response to feeding of two dietary concentrations of P, one of which was close to recent National Research Council requirements, and the other of which was well in excess of the requirement. Diets containing 0.37 or 0.57% P (dry basis) were fed to Holstein cows for the first 165 d of lactation, and occasionally longer until cows were confirmed pregnant approximately 60 d after insemination. At calving, cows were randomly assigned to experimental diets. The number of cows completing a minimum of 165 d of lactation was 123 for the 0.37 and 124 for the 0.57% P groups. Cows were housed in a stanchion barn and fed one of two transition diets, each formulated to contain one of the P treatments for the first 3 wk of lactation, and then cows were moved to a free-stall barn where the experimental diets were group fed. Milk production, milk fat, and milk protein averaged 35.1 kg/d, 3.92%, and 2.90% for the 0.37% P diet, and 34.9 kg/d, 3.98%, and 2.91% for the 0.57% P diet. None of these measures were different between treatments. Blood serum P concentrations on d 50 and 100 of lactation averaged 6.1 and 6.2 mg/dL for the 0.37% P diet, and 6.8 and 6.9 mg/dL for the 0.57% P diet. No treatment differences were detected in milk production, cow health, or body condition score.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号