首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A crossover design trial with 4 ruminally and duodenally cannulated lactating dairy cows was conducted to study the effect of sodium laurate on ruminal fermentation, nutrient digestibility, and milk yield and composition. The daily dose of sodium laurate (0, control or 240 g/cow, LA) was divided in 2 equal portions and introduced directly into the rumen through the cannula before feedings. Ruminal samples (29 in 114 h) were analyzed for fermentation variables and protozoal counts. Sodium laurate had no effect on ruminal pH and total and individual volatile fatty acids concentrations. Ruminal ammonia concentration, ammonia N pool size, and the irreversible loss of ammonia N were unaffected by treatment. Compared to control, protozoal counts were reduced by 91% by LA. Carboxymethylcellulase and xylanase activities of ruminal fluid were decreased (by 40 and 36%, respectively), and amylase activity was not affected by LA compared with control. Flow of microbial N to the duodenum was reduced by LA. Dry matter intake and apparent total tract digestibility of dry matter, organic matter, crude protein, neutral detergent fiber, and acid detergent fiber were not different between the 2 treatments. Milk yield, fat-corrected milk yield, milk fat and protein concentrations and yields, and milk urea N content were not affected by treatment. Sodium laurate did not affect transfer of ruminal ammonia-15N into bacterial or milk protein. In conclusion, LA at approximately 0.3% of the rumen weight reduced ruminal protozoal population and had a negative effect on fibrolytic activities of ruminal fluid and microbial protein flow to the intestine. Treatment had no other significant effects on ruminal fermentation, total tract digestibility, or transfer of ruminal ammonia-15N into milk protein.  相似文献   

2.
This experiment investigated the effect of dietary crude protein (CP) and ruminally degraded protein (RDP) levels on rumen fermentation, digestibility, ammonia emission from manure, and performance of lactating dairy cows. The experiment was a replicated 3 × 3 Latin square design with 6 cows. Three diets varying in CP concentration were tested (CP, % of dry matter): 15.4 (high CP, control), 13.4 (medium CP), and 12.9% (low CP). These diets provided metabolizable protein balances of 323, −44, and 40 g/d and RDP balances of 162, −326, and −636 g/d (high, medium, and low, respectively). Both the medium and low CP diets decreased ruminal pH compared with high CP, most likely because of the higher nonfiber carbohydrate concentration in the former diets. Ruminal ammonia pool size (rumen ammonia N was labeled with 15N) and the concentration of total free amino acids were greater for the high CP diet than for the RDP-deficient diets. Apparent total-tract nutrient digestibilities were not affected by treatment. Both the medium and low CP diets resulted in lower absolute and relative excretion of urinary N compared with the high CP diet, as a proportion of N intake. Excretion of fecal N and milk yield and composition were not affected by diet. Milk N efficiency (milk N ÷ N intake) and the cumulative secretion of ammonia-15N in milk protein were greater for the RDP-deficient diets, and milk urea N concentration was greater for the high CP diet. Both medium and low CP diets decreased the irreversible loss of ruminal ammonia N compared with the high CP diet. The rate and cumulative ammonia emissions from manure were lower for the medium and low CP diets compared with the high CP diet. Overall, this study demonstrated that dairy diets with reduced CP and RDP concentrations will produce manure with lower ammonia-emitting potential without affecting cow performance, if metabolizable protein requirements are met.  相似文献   

3.
In vivo protein degradability of two basal diets and bacterial protein synthesis were determined in four lactating dairy cows equipped with ruminal and duodenal cannulas. The diets contained corn silage, high moisture corn, and either soybean meal or a 60:40 mixture of soybean meal and corn gluten meal. Diets had calculated ruminal protein degradabilities of 69.3 and 62.3%, respectively. Both diets contained approximately 14% CP and 21% ADF. Duodenal flows of total N, total protein N, microbial N, and duodenal recovery of ingested N tended to be higher for the soybean meal and corn gluten meal diet; ruminally degraded CP was significantly lower than for the soybean meal diet. Ruminal ammonia and plasma urea concentrations tended to be higher for the soybean meal diet, as were molar percentages of butyrate and valerate. Ruminal and total tract apparent digestibilities of CP and OM were not significantly different between diets. Ruminal degradation of protein in the two diets differed by the amount predicted by the NRC system for lactating cows, although absolute values were lower than most previous estimates for similar diets.  相似文献   

4.
Six ruminally and duodenally cannulated Holstein cows were used in a 6 x 6 Latin square design. The objective was to evaluate any potential interactions in site of nutrient digestion when neutral detergent fiber (NDF) from cottonseed was incrementally substituted for forage NDF (FNDF) from alfalfa silage and when starch availability was varied by feeding ground (G) or steam-flaked (SF) corn. Iso-NDF diets were forage control with G corn (21% FNDF), 5% whole cottonseed (WCS) with G or SF corn (18% FNDF), 10% WCS with G or SF corn (15% FNDF), and 15% WCS with G corn (12% FNDF). Ruminal or total tract digestibilities of organic matter (OM) or nonstructural carbohydrate (NSC) were unaffected, but efficiency of microbial protein synthesis decreased as WCS increased. Ruminal NDF digestibility was not affected despite a linear decrease in pH, but postruminal NDF digestibility decreased with increasing WCS. Ruminal digestibilities of OM and NSC were higher for SF than G corn but did not affect efficiency of microbial N synthesis. Dry matter intake increased quadratically with increasing level of WCS but decreased when SF replaced G corn. Milk yield did not differ across treatments. Milk fat percentage was affected quadratically and milk protein increased linearly with increasing WCS. Milk fat percentage decreased but milk protein was not affected when SF replaced G corn. Lack of an interaction between corn source and level of WCS substitution suggests that WCS was equally effective in maintaining ruminal fermentation and digestibility in diets varying in ruminal starch availability.  相似文献   

5.
The objective of this experiment was to investigate the effect of level of dietary concentrate on rumen fermentation, digestibility, and N losses in lactating dairy cows. The experiment was a replicated 3 × 3 Latin square design with 6 cows and 16-d adaptation periods. Ruminal contents were exchanged between cows at the beginning of each adaptation period. Data for 2 of the diets tested in this experiment are presented here. The diets contained (dry matter basis): 52% (LowC; control) and 72% (HighC) concentrate feeds. Crude protein contents of the diets were 16.5 and 16.4%, respectively. The HighC diet decreased ruminal pH and ammonia concentration and increased propionate concentration compared with LowC. Acetate:propionate ratio was greater for LowC than for HighC. Rumen methane production and microbial protein synthesis were unaffected by diet. Dry matter intake was similar among diets, but milk yield was increased by HighC compared with LowC (36.0 and 33.2 kg/d, respectively). Milk fat percentage and yield and total-tract apparent NDF digestibility were decreased by HighC compared with LowC. More ruminal ammonia N was transferred into milk protein with HighC than with LowC. Urinary N excretion, plasma urea N, and milk urea N concentration were not affected by diet. The ammonia emitting potential of manure was similar between LowC and HighC diets. Increased concentrate proportion in the diet of dairy cows resulted in reduced ruminal ammonia concentration and enhanced ammonia utilization for milk protein synthesis. These effects, however, did not result in reduced urinary N losses and only marginally improved milk N efficiency. Increasing dietary concentrate was not a successful strategy to mitigate enteric methane production and ammonia emissions from manure.  相似文献   

6.
《Journal of dairy science》2022,105(5):3954-3968
Our objective was to evaluate cow N metabolism and ruminal measures with diets containing 3 different levels of molasses or finely ground dry corn grain with 2 levels of ruminally degradable protein (RDP). Twelve lactating, ruminally cannulated Holstein cows (parity 2.25 ± 0.62; 185 ± 56 DIM; 41.3 ± 6.3 kg of milk initially) were individually fed in an experiment designed as a split-plot, replicated 3 × 3 Latin square, where each period lasted 28 d. Six diets were formulated according to a 2 × 3 factorial arrangement of treatments, where 2 levels of RDP (+RDP and ?RDP) were fed throughout the experiment as the whole plot, and 3 levels of molasses (0, 5.25, or 10.50% of dry matter replacing finely ground dry corn grain) were fed in sequences of the Latin squares. Dry matter intake did not differ by diet, although ash intake increased linearly with increasing molasses. Ruminal pH, organic acid concentration, and ammonia concentration were not affected by diet. Molar percentages of ruminal acetate decreased and butyrate increased linearly with increasing levels of molasses. Ruminal free amino acid concentration was greater for +RDP, whereas branched-chain volatile fatty acids declined linearly with increasing molasses. Rumen content mass, ruminal liquid, and ruminal acetate pool size was greater for ?RDP, although ruminal lactate pool size tended to be greater with +RDP. Increased ruminal lactate when increasing molasses with high RDP should be explored further, to optimize microbial efficiency and rumen health. Total-tract apparent dry matter digestibility based on spot sampling was not affected by diet; however, ash digestibility increased linearly with increasing levels of molasses. Calculated urine output was greater for cows fed diets with increasing levels of molasses and for cows fed +RDP. Grams of N distributed to excretion pools were not different across diets, although, as molasses increased, a lower proportion of N intake was excreted in urine. Overall, the results from this experiment showed that dairy cows used dietary carbohydrates differently during ruminal fermentation, with increasing molasses resulting in increased butyrate molar proportions at the expense of acetate. Additionally, RDP tended to modify the effects of carbohydrate fermentation, resulting in a tendency for increasing lactate molar pool size only in diets with greater RDP, although this did not ultimately affect ruminal pH.  相似文献   

7.
Effect of diet fermentability on efficiency of microbial N production was evaluated. Eight ruminally and duodenally cannulated Holstein cows (55 +/- 15.9 days in milk; mean +/- SD) were used in a duplicated 4 x 4 Latin square design with a 2 x 2 factorial arrangement of treatments. Experimental diets contained either ground high moisture corn (HM) or dry ground corn (DG) at two dietary starch concentrations (32 vs. 21%). All diets were formulated for 18% CP, and the sources of dietary protein were alfalfa silage (50% of forage at DM basis), soybean meal, distillers grain, and blood meal. The amount of OM truly fermented in the rumen varied from 7.7 (DG at 21% dietary starch) to 11.3 kg/d (HM at 32% dietary starch) among treatments, and was greater for high starch diets and HM treatments compared with low starch diets and DG treatments, respectively. Microbial N flow was greater for high starch diets compared with low starch diets, but was not affected by corn grain treatment. Microbial efficiency was lower for HM compared with DG treatment (39.7 vs. 48.4 g of microbial N/kg of true ruminally degraded OM), but was not affected by dietary starch concentration. Microbial efficiency was positively correlated with rate of passage for OM and starch (r = 0.77 and 0.75, respectively). Rapid passage rate may have decreased microbial turnover in the rumen, enhancing microbial efficiency. Microbial efficiency was negatively correlated with rate of starch digestion (r = -0.55), consistent with the energy spilling theory. However, energy spilling did not appear to be from lack of ammonia or low ruminal pH. Microbial efficiency was not related to ruminal ammonia concentration, daily mean ruminal pH, or minimum ruminal pH. Rate of starch availability and rates of passage for starch and OM from the rumen are important determinants of efficiency of microbial protein synthesis in vivo.  相似文献   

8.
This study conducted according to a 4 x 4 Latin square with 28 d periods and four ruminally cannulated Finnish Ayrshire cows investigated the effect of protein supplements differing in amino acid (AA) profile and rumen undegradable protein content on postruminal AA supply and milk production. Mammary metabolism of plasma AA and other nutrients were also studied. The basal diet (Control; 13.4% crude protein) consisted of grass silage and barley in a ratio of 55:45 on a dry matter basis. The other three isonitrogenous diets (17.0% crude protein) were control + fishmeal (FM), control + soybean meal (SBM), and control + corn gluten meal (CGM). The protein supplements replaced portions of dry matter of the control diet maintaining the silage to barley ratio constant for all diets. Dry matter intake was limited to 95% of the preexperimental ad libitum intake and was similar (mean 19.8 kg/d dry matter) across the diets. Protein supplements increased milk, lactose, and protein yields but did not affect yields of energy-corrected milk or milk fat. Milk protein yield response was numerically lowest for diet SBM. Protein supplements increased milk protein concentration but decreased milk fat and lactose concentrations. Microbial protein synthesis and rumen fermentation parameters were similar across the diets, except for an increased rumen ammonia concentration for diets supplemented with protein feeds. Protein supplements increased N intake, ruminal organic matter and N, and total tract organic matter, N, and neutral detergent fiber digestibilities. Protein supplements also increased N and AA flows into the omasum, with SBM giving the lowest and CGM the highest flows. This was associated with an unchanged microbial N flow and a higher undegraded dietary N flow. The omasal flows of individual AA reflected differences in total N flow and AA profile of the experimental diets. Differences in AA flows did not always reflect plasma AA concentrations. The results indicated that AA supply of dairy cows fed a grass silage-cereal diet can be manipulated using protein supplements differing in ruminal protein degradability and AA profile. Lower milk production response to SBM than that to FM and CGM appeared to be related mainly to lower N and AA supplies arising from a high ruminal protein degradability of SBM. Histidine appeared to be the first limiting AA for milk protein synthesis on the control diet. Mammary gland may regulate AA uptake according to requirements.  相似文献   

9.
Three ruminally and duodenally cannulated, lactating Holstein cows were used in a 3 x 3 Latin square experiment to study the effects of differing levels of nonstructural carbohydrate and degradable intake protein on ruminal digestibility and microbial protein production. Three diets were formulated to contain 1) 38 and 13.2%, 2) 31 and 11.8%, and 3) 24 and 9% nonstructural carbohydrate and degradable intake protein as percentages of the DM, respectively. Dry matter intakes were similar for all diets (21.9, 21.1, and 18.3 kg/d for diets 1, 2, and 3, respectively). Likewise, microbial efficiency, as estimated from purine analysis, was unaffected by diet and averaged 24 g of microbial N/kg of OM digested for all treatments. Ruminal digestion of OM averaged 66.6, 65.1, and 55.7% for diets 1, 2, and 3, respectively, resulting in lower microbial N flow per day for diet 3 (317, 333, and 202 g, respectively). Digestion of nonstructural carbohydrate and CP followed similar trends as did OM digestion, whereas NDF digestion remained similar across all diets. These results indicate that nonstructural carbohydrate greater than 24% and ruminally degradable protein greater than 9% of DM will enhance microbial protein flow from the rumen.  相似文献   

10.
Eight lactating cows were fed 4 diets in which dietary crude protein (CP) was increased in steps of approximately 2 percentage units from 11 to 17% of DM by replacing high-moisture corn with soybean meal supplemented with rumen-protected Met to maintain a Lys:Met ratio of 3:1 in metabolizable protein. Trial design was a replicated 4 × 4 Latin square; experimental periods lasted 28 d, with data and sample collection being performed during wk 3 and 4 of each period. Digesta samples were collected from the rumen as well as the omasum to measure metabolite concentrations and ruminal outflow of N fractions using infusion of 15N-enriched ammonia to quantify microbial nonammonia N (NAN) and nonmicrobial NAN. Data were analyzed using the MIXED procedure of SAS (SAS Institute Inc.). There were linear increases in the yields of milk and true protein and concentration of milk urea N, and a linear decrease in N efficiency, with increasing dietary CP. Apparent ruminal and total-tract N digestibility increased linearly with increasing dietary CP, but estimated true total-tract N digestibility was not affected. Apparent digestibility of the other macronutrients was not influenced by diet. Ruminal ammonia, total AA and peptides, and branched-chain VFA also increased linearly with dietary CP. The 15N enrichment of liquid- and particle-associated microbes linearly declined with increasing dietary CP due to decreasing 15N enrichment of the ammonia pool. Although no effect of dietary CP on nonmicrobial NAN flow was detected, total NAN flow increased linearly from 525 g/d at 11% CP to 637 g/d at 17% CP due to the linear increase in microbial NAN flow from 406 g/d at 11% CP to 482 g/d at 17% CP. Under the conditions of this study, when dietary CP was increased by adding soybean meal supplemented with rumen-protected Met, improved milk and protein yields were driven not by RUP supply but by increased ruminal outflow of microbial protein.  相似文献   

11.
Barley silages varying in theoretical chop length were used to evaluate the effects of physically effective (pe) neutral detergent fiber (NDF) content of dairy cow diets on nutrient intakes, site and extent of digestion, microbial protein synthesis, and milk production. The experiment was designed as a replicated 3 × 3 Latin square using 6 lactating dairy cows with ruminal and duodenal cannulas. During each of 3 periods, cows were offered 1 of 3 diets (low, medium, and high peNDF) obtained using barley silage that varied in particle length: fine (theoretical chop length of 4.8 mm), medium (equal proportions of long and fine silages), and long (theoretical chop length of 9.5 mm). The peNDF contents were determined by multiplying the proportion (dry matter basis) of feed retained on the 2 screens (8 and 19 mm) of the Penn State Particle Separator by the NDF content of the diet, and were 10.5, 11.8, and 13.8% for the low, medium, and high diets, respectively. Increased forage particle length linearly increased intake of peNDF but intakes of dry matter, organic matter, starch, and N were highest for cows fed the medium peNDF diet. Digestibilities of organic matter, NDF, and acid detergent fiber in the total tract were linearly decreased with increasing dietary peNDF, although total digestibility of starch and N was not affected by the treatments. Nevertheless, decreased digestibility due to increased dietary peNDF did not reduce milk production or milk composition because the cows were in mid to late lactation. Ruminal microbial protein synthesis and microbial efficiency were numerically higher with the low peNDF than with the medium or high peNDF diets. These results indicate that increasing the peNDF content of a diet containing barley silage decreases fiber digestibility in the total tract and lowers microbial efficiency. Therefore, the benefits of increasing dietary particle size, expressed as peNDF, on reducing the risk of ruminal acidosis should be weighed against potentially negative effects on efficiency of feed use.  相似文献   

12.
Eight multiparous Holstein cows (676 ± 57 kg of body weight; 121 ± 17 d-in-milk) were used in a replicated 4 × 4 Latin square design to determine the effects of 4 sources of carbohydrate on milk yield and composition, ruminal fermentation, and microbial N flow to the duodenum. Four cows in one of the Latin squares were fitted with permanent ruminal cannulae. Diets contained (DM basis) 50% forage in combinations of alfalfa hay and barley silage, and 50% concentrate. The concentrate portion of the diets contained barley, corn, wheat, or oats grain as the primary source of carbohydrate. Intake of DM ranged from 24.0 to 26.2 kg/d, and it tended to be lower in cows fed the wheat-based diet compared with those fed the barley-based diet; consequently, milk yield tended to be lower in cows fed the wheat-based diet compared with those fed the barley-based diet. Cows fed the barley- or wheat-based diets had a lower milk fat content compared with those fed the corn-based diet. Ruminal fermentation characteristics were largely unaffected by the source of dietary carbohydrate, with similar ruminal pH and volatile fatty acid and ammonia concentrations for the first 6 h after the morning feeding. Dietary treatment did not affect total tract apparent digestibility of DM, organic matter, and neutral detergent fiber; however, total tract apparent digestibility of starch in cows fed the oats-based diet was higher compared with those fed the corn-and wheat-based diets. Nitrogen that was used for productive purposes (i.e., N secreted in milk + N apparently retained by the cow) tended to be lower in cows fed the wheat-based diet compared with cows fed the barley-, corn-, or oats-based diets. Urinary purine derivative (PD) excretion was similar in cows fed the barley-, corn-, and wheat-based diets; however, purine derivative excretion was higher in cows fed the barley-based diet compared with those fed the oats-based diet. Consequently, estimated microbial N flow to the duodenum was 49 g/d higher in cows fed the barley-based diet compared with those fed the oats-based diet. Improved production performance with corn and barley diets appeared to be due to greater nutrient absorption than in cows fed oats and wheat diets, rather than improved nutrient utilization efficiency.  相似文献   

13.
Four midlactation, multiparous Holstein cows fitted with ruminal and duodenal cannulas were used in a 4 x 4 Latin square design to determine the effects of supplementing urea or starch or both to diets containing fish meal on passage of nutrients to the small intestine and performance of lactating cows. The treatments (in a 2 x 2 factorial arrangement) were 1) control and control plus 2) urea, 3) starch, or 4) starch and urea. Supplementing diets with urea did not affect DMI; ruminal, postruminal, or total tract digestibilities of DM, starch, ADF, or NDF; ruminal fluid VFA concentrations or molar percentages; or ruminal fluid or particulate dilution rates. Feeding additional starch depressed DMI but did not alter ruminal or postruminal digestion of OM or VFA concentrations and molar percentages in ruminal fluid. Ruminal fluid ammonia concentration was increased by feeding urea and decreased by feeding additional starch. Passage of nonammonia N, nonammonia nonmicrobial N, or microbial N to the small intestine and efficiency of microbial CP synthesis were not affected significantly by supplying either urea or additional starch. Feeding urea increased passage of methionine to the small intestine, whereas feeding additional starch increased passage of methionine and arginine. Passage of other amino acids to the small intestine was not altered significantly by feeding urea or additional starch. Production of milk and milk protein was increased, but yields of fat and SNF were not altered by feeding diets supplemented with urea. Production of milk and milk fat was not affected, but yields of CP and SNF were decreased when additional starch was fed to cows.  相似文献   

14.
Six multiparous Holstein cows (average 31 days in milk; 36.3 kg/d of milk) fitted with ruminal cannulas were used in a 6 x 6 Latin square with 21-d periods to investigate the effects of diets that varied in forage source and amount of supplemental tallow. Isonitrogenous diets in a 2 x 3 factorial arrangement were based on either high corn silage (40:10 corn silage to alfalfa silage, % of dry matter) or high alfalfa silage (10:40 corn silage to alfalfa silage, % of dry matter) and contained 0, 2, or 4% tallow. Intakes of dry matter and total fatty acids were lower when cows were fed the high corn silage diet. Tallow supplementation linearly decreased dry matter intake. Milk yield was unaffected by diet; yields of milk fat and 3.5% fat-corrected milk were higher for the high alfalfa silage diet but were unaffected by tallow. Milk fat percentage was higher for the high alfalfa silage and tended to decrease when tallow was added to the high corn silage diet. Contents of trans-C18:1 isomers in milk fat were increased by high corn silage and tallow, and tended to be increased more when tallow was fed in the high corn silage diet. Ruminal pH and acetate:propionate were lower when high corn silage was fed. Ruminal acetate:propionate decreased linearly as tallow increased; the molar proportion of acetate was decreased more when tallow was added to the high corn silage diet. Ruminal liquid dilution rates were higher for the alfalfa silage diet; ruminal volume and solid passage rates were similar among diets. Total tract apparent digestibilities of dry matter, organic matter, crude protein, starch, energy, and total fatty acids were unaffected by diet. Digestibilities of neutral detergent fiber, acid detergent fiber, hemicellulose, and cellulose were lower when high corn silage was fed. The high alfalfa silage diet increased intakes of metabolizable energy and N, and increased milk energy and productive N. Tallow decreased the amount of N absorbed but had few other effects on utilization of energy or N. Tallow linearly increased concentrations of nonesterified fatty acids and cholesterol in plasma; cholesterol was increased by high alfalfa silage. Overall, forage source had more pronounced effects on production and metabolism than did tallow supplementation. Few interactions between forage source and tallow supplementation were detected except that ruminal fermentation and milk fat content were affected more negatively when tallow was fed in the high corn silage diet.  相似文献   

15.
The effects of modifying the dietary profile of neutral detergent-soluble carbohydrates (NDSC) on milk production and rumen fermentation were determined. Corn silage and alfalfa hay-based diets were formulated to contain 40% calculated NDSC supplied primarily by dried citrus pulp as a source of neutral detergent-soluble fiber (NDSF), or corn products as sources of starch. Diets were compared within cow with reversal experiments with two periods. In experiment 1, 11 multiparous Holstein cows including three ruminally cannulated animals were individually fed diets containing 23.6% citrus pulp (diet CPD) or 25.3% corn hominy (diet HD) on a dry matter basis. In experiment 2, 184 animals fed as two groups received diets containing 20.5% citrus pulp (diet CPD) or 19.5% cornmeal (diet CMD). Diets CPD provided more dietary NDSF and HD and CMD more starch. In experiment 1, cows fed HD had a greater milk protein percentage (+0.12%), and tended to yield more milk protein (0.08 kg/d) than cows fed CPD. Although ruminal H+ concentrations did not differ between diets, diet x time postfeeding interactions were significant. Ruminal organic acid concentrations did not differ between diets. In experiment 2, cows fed CMD yielded more milk (3.9 kg/d), 3.5% fat- and protein-corrected milk (2.6 kg/d), fat (0.05 kg/d), and protein (0.08 kg/d), whereas cows fed CPD produced greater concentrations of fat (+0.18%), and milk urea nitrogen (0.76 mg/dl). Modifying the proportions of NDSC in the diet can alter milk production and composition, the pattern of ruminal fermentation, and N utilization in dairy cows.  相似文献   

16.
The interaction between the quality of grass silage and starch supplementation on ruminal digestion was studied in an experiment with a 2 x 2 factorial design using four dairy cows. Treatment factors were grass silage harvested after either 21 or 37 d of regrowth and two concentrations of steam-flaked corn starch (0 or 4 kg/d). Ruminal volume and flow of duodenal digesta were estimated. When forage was harvested at a more mature stage, only minor effects were noted for silage composition and, consequently, ruminal and intestinal digestion. The addition of starch to the diet tended to reduce ruminal digestion of neutral detergent fiber. The reduction in ruminal digestion was not compensated by increased digestion in the large intestine. Starch increased duodenal nonammonia N flow because of an increase in bacterial N flow. The increase in bacterial N was accompanied by a reduction in the escape of feed N from the rumen. Results from this study indicate that the addition of ruminally available starch to diets based on grass silage reduced ruminally degradable neutral detergent fiber and increased the duodenal supply of protein. These effects have to be taken into account to predict production responses to extra starch.  相似文献   

17.
The objective of this study was to determine whether the partial replacement of barley starch with lactose (fed as dried whey permeate; DWP) affects N utilization, whole-body urea kinetics, and production in dairy cows. Eight lactating Holstein cows were used in a replicated 4 × 4 Latin square design with 28-d periods. Four cows in one Latin square were ruminally cannulated and used to determine dietary effects on whole-body urea kinetics and N utilization. Cows were fed a barley-based diet that contained 3.6% (dry matter basis) total sugar (TSG; designated control), or diets that contained 6.6, 9.6, or 12.6% TSG. Dietary TSG content was increased by the replacement of barley grain with DWP (83% lactose). Diets were isonitrogenous (~17.3% crude protein), and starch contents of the control, 6.6, 9.6, and 12.6% TSG diets were 24.3, 22.2, 21.2, and 19.1%, respectively. Whole-body urea kinetics were measured using 4-d infusions of [15N15N]-urea with concurrent total collections of feces and urine. Dry matter intake (mean = 26.7 kg/d), milk yield (mean = 34.9 kg/d), and milk protein and fat contents were unaffected by diet. Ruminal ammonia-N concentration decreased linearly as TSG content increased, whereas ruminal butyrate concentration increased linearly as TSG content increased. Urinary excretion of total N and urea-N changed quadratically, whereas urinary excretion of total N (% of N intake) tended to change quadratically as TSG content increased. Fecal N excretion linearly increased as TSG content increased. A quadratic response was observed for total N excretion as TSG content increased. Milk N and retained N were not affected by diet. As TSG content increased, we observed quadratic responses in the omasal flow of fluid-associated and total bacterial nonammonia N, endogenous production of urea-N, urea-N recycled to the gastrointestinal tract, and urea-N returned to the ornithine cycle. Dietary TSG content did not affect the anabolic utilization of recycled urea-N or the proportion of recycled urea-N that was used for bacterial growth. Our results indicate that feeding DWP did not influence dry matter intake, milk yield, or milk composition. Feeding DWP decreased ruminal ammonia-N concentration, but this did not result in positive responses in milk protein secretion or N balance. The quadratic response in omasal flow of total bacterial nonammonia N indicated that including TSG beyond 9.6% of diet dry matter might depress ruminal microbial protein synthesis.  相似文献   

18.
The objective of this study was to evaluate the effects of 2 lots of barley grain cultivars differing in expected ruminal starch degradation on dry matter (DM) intake, ruminal fermentation, ruminal and total tract digestibility, and milk production of dairy cows when provided at 2 concentrations in the diet. Four primiparous ruminally cannulated (123 ± 69 d in milk; mean ± SD) and 4 multiparous ruminally and duodenally cannulated (46 ± 14 d in milk) cows were used in a 4 × 4 Latin Square design with a 2 × 2 factorial arrangement of treatments with 16-d periods. Primiparous and multiparous cows were assigned to different squares. Treatments were 2 dietary starch concentrations (30 vs. 23% of dietary DM) and 2 lots of barley grain cultivars (Xena vs. Dillon) differing in expected ruminal starch degradation. Xena had higher starch concentration (58.7 vs. 50.0%) and greater in vitro 6-h starch digestibility (78.0 vs. 73.5%) compared with Dillon. All experimental diets were formulated to supply 18.3% crude protein and 20.0% forage neutral detergent fiber. Dry matter intake and milk yield were not affected by treatment. Milk fat concentration (3.55 vs. 3.29%) was greater for cows fed Dillon compared with Xena, but was not affected by dietary starch concentration. Ruminal starch digestion was greater for cows fed high-starch diets compared with those fed low-starch diets (4.55 vs. 2.49 kg/d), and tended to be greater for cows fed Xena compared with those fed Dillon (3.85 vs. 3.19 kg/d). Ruminal acetate concentration was lower, and propionate concentration was greater, for cows fed Xena or high-starch diets compared with cows fed Dillon or low-starch diets, respectively. Furthermore, cows fed Xena or high-starch diets had longer duration that ruminal pH was below 5.8 (6.6 vs. 4.0 and 6.4 vs. 4.2 h/d) and greater total tract starch digestibility (94.3 vs. 93.0 and 94.3 vs. 93.0%) compared with cows fed Dillon or low-starch diets, respectively. These results demonstrate that selection of barley grain can affect milk fat production and rumen fermentation to an extent at least as great as changes in dietary starch concentration.  相似文献   

19.
20.
Intake of physically effective neutral detergent fiber (peNDF) of dairy cows was altered by adjusting the proportion of forage in the diet and forage particle length, and effects on nutrient intake, site and extent of digestion, microbial N synthesis, and milk production were measured. The experiment was designed as a triplicated 4 × 4 Latin square using 12 lactating dairy cows, with 4 that were ruminally and duodenally cannulated, 4 that were ruminally cannulated, and 4 that were intact. Thus, the site and extent of digestion, and microbial N synthesis were measured in a single 4 × 4 Latin square. Treatments were arranged in a 2 × 2 factorial design; 2 forage particle lengths (FPL) of alfalfa silage (short and long) were combined with low (35:65) and high (60:40) forage:concentrate (F:C) ratios (dry matter basis). Dietary peNDF content was determined from the sum of the proportion (dry matter basis) of dietary dry matter retained either on the 2 screens (8- and 19-mm) or on the 3 screens (1.18-, 8-, and 19-mm) of the Penn State Particle Separator multiplied by the neutral detergent fiber content of the diet. An increased F:C ratio reduced intakes of dry matter and starch by 9 and 46%, respectively, but increased intake of fiber from forage sources by 53%. Digestibility of dry matter in the total tract was not affected, whereas total digestion of fiber and N was improved by increasing the F:C ratio. Improved total fiber digestion resulted from higher ruminal digestion, which was partially due to a shift in starch digestion from the rumen to the intestine with the increased F:C ratio. Actual milk yield was decreased but production of 4% fat-corrected milk was similar between the low and high F:C diets because of increased milk fat content. Increased FPL increased intake of peNDF, especially when the high F:C diet was fed. However, nutrient intakes, N metabolism in the digestive tract, and milk production were not affected. Digestibility of neutral detergent fiber in the total tract was increased because of improved fiber digestion in the rumen with increased FPL. These results indicate that feeding dairy cows a low F:C diet is beneficial in terms of increasing feed intake, microbial N synthesis, and milk production. However, low F:C diets do not maximize feed digestion and production efficiency because of the effects of subacute ruminal acidosis. Increased FPL improves fiber utilization with minimal effects on the digestion of other nutrients and milk production. Increasing dietary peNDF, through an increased proportion of forage or increased FPL, improves fiber digestion because of improved rumen function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号