首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ramakanta Naik 《Thin solid films》2010,518(19):5437-5441
In this paper, we report results of the optical properties of thermally deposited As2 − xS3 − xSbx thin films with x = 0.02, 0.07, 0.1 and 0.15. We have characterized the deposited films by Fourier Transform Infrared, Raman and X-ray photoelectron spectroscopy (XPS). The relationship between the structural and optical properties and the compositional variation were investigated. It was found that the optical bandgap decreases with increase in Sb content. The XPS core level spectra show a decrease in As2S3 percentage with increase in Sb content. This is confirmed from the shifting of the Raman peak from AsS3 vibrational mode towards SbS3 vibrational mode.  相似文献   

2.
CuIn1 − xGaxTe2 thin films with x = 0, 0.5 and 1, have been prepared by flash evaporation technique. These semiconducting layers present a chalcopyrite structure. The optical measurements have been carried out in the wavelength range 200-3000 nm. The linear dependence of the lattice parameters as a function of Ga content obeying Vegard's law was observed. The films have high absorption coefficients (4 · 104 cm− 1) and optical band gaps ranging from 1.06 eV for CuInTe2 to 1.21 eV for CuGaTe2. The fundamental transition energies of the CuIn1 − xGaxTe2 thin films can be fitted by a parabolic equation namely Eg1(x) = 1.06 + 0.237x − 0.082x2. The second transition energies of the CuInTe2 and CuGaTe2 films were estimated to be: Eg2 = 1.21 eV and Eg2 = 1.39 eV respectively. This variation of the energy gap with x has allowed the achievement of absorber layers with large gaps.  相似文献   

3.
ZnxNi1 − xO thin films were prepared by sol-gel spin coating method onto glass substrates in combination with annealing process. Effect of zinc content on the structural, optical and ozone-induced coloration properties of as-prepared films was investigated by X-ray diffraction, field emission-scanning electron microscope, atomic force microscopy and UV-VIS spectrophotometer, respectively. X-ray diffraction results reveal that the structures of all films are still cubic NiO structure. Average grain size of ZnxNi1 − xO film increases with increasing annealing temperature and its crystallization is strongly affected by Zn content. Coloration of the films was obtained after UV/ozone exposure due to a presence of ozone-induced hydroxyl groups. Significant enhancement of coloration efficiency of the films is achieved as content of Zn increases.  相似文献   

4.
By means of electron gun evaporation Ge1 − xSix:N thin films, in the entire range 0 ≤ x ≤ 1, were prepared on Si (100) and glass substrates. The initial vacuum reached was 6.6 × 10− 4 Pa, then a pressure of 2.7 × 10− 2 Pa of high purity N2 was introduced into the chamber. The deposition time was 4 min. Crucible-substrate distance was 18 cm. X-ray diffraction patterns indicate that all the films were amorphous (a-Ge1 − xSix:N). The nitrogen concentration was of the order of 1 at% for all the films. From optical absorption spectra data and by using the Tauc method the energy band gap (Eg) was calculated. The Raman spectra only reveal the presence of SiSi, GeGe, and SiGe bonds. Nevertheless, infrared spectra demonstrate the existence of SiN and GeN bonds. The forbidden energy band gap (Eg) as a function of x in the entire range 0 ≤ x ≤ 1 shows two well defined regions: 0 ≤ x ≤ 0.67 and 0.67 ≤ x ≤ 1, due to two different behaviors of the band gap, where for x > 0.67 exists an abruptly change of Eg(x). In this case Eg(x) versus x is different to the variation of Eg in a-Ge1 − xSix and a-Ge1 − xSix:H. This fact can be related to the formation of Ge3N4 and GeSi2N4 when x ≤ 0.67, and to the formation of Si3N4 and GeSi2N4 for 0.67 ≤ x.  相似文献   

5.
Interfacial reactions and electrical properties of RF sputter deposited HfTaOx high-k gate dielectric films on Si1 − xGex (x = 19%) are investigated. X-ray photoelectron spectroscopic analyses indicate an interfacial layer containing GeOx, Hf silicate, SiOx (layer of Hf-Si-Ge-O) formation during deposition of HfTaOx. No evidence of Ta-silicate or Ta incorporation was found at the interface. The crystallization temperature of HfTaOx film is found to increase significantly after annealing beyond 500 °C (for 5 min) along with the incorporation of Ta. HfTaOx films (with 18% Ta) remain amorphous up to about 500 °C anneal. Electrical characterization of post deposition annealed (in oxygen at 600 °C) samples showed; capacitance equivalent thickness of ~ 4.3-5.7 nm, hysteresis of 0.5-0.8 V, and interface state density = 1.2-3.8 × 1012 cm− 2 eV− 1. The valence and conduction band offsets were determined from X-ray photoelectron spectroscopy spectra after careful analyses of the experimental data and removal of binding energy shift induced by differential charging phenomena occurring during X-ray photoelectron spectroscopic measurements. The valence and conduction band offsets were found to be 2.45 ± 0.05 and 2.31 ± 0.05 eV, respectively, and a band gap of 5.8 ± 05 eV was found for annealed samples.  相似文献   

6.
MgxZn1−xO films were deposited onto the glass substrate by a sol-gel spin coating method. The drying and annealing temperatures were 300 and 500 °C in air. As x varies from 0 to 1, it was observed that the crystal structure is changed from wurtzite ZnO to cubic MgO. The morphology characterizations of these films were observed by scanning electron microscope. The randomly oriented hexagonal nanorods were gown on the glass surface when x = 0 and 0.25, which became disappeared with increasing Mg contents. The optical properties of these films were investigated by room-temperature photoluminescence (PL) and UV-vis absorption spectra, which show that the optical band gap and photoluminescence in the visible and UV regions can be ideally tuned by varying the Mg contents in the MgxZn1−xO alloy films.  相似文献   

7.
Zn1 − xMgxO thin films of various Mg compositions were deposited on quartz substrates using inexpensive ultrasonic spray pyrolysis technique. The influence of varying Mg composition and substrate temperature on structural, electrical and optical properties of Zn1 − xMgxO films were systematically investigated. The structural transition from hexagonal to cubic phase has been observed for Mg content greater than 70 mol%. AFM images of the Zn1 − xMgxO films (x = 0.3) deposited at optimized substrate temperature clearly reveals the formation of nanorods of hexagonal Zn1 − xMgxO. The variation of the cation-anion bond length to Mg content shows that the lattice constant of the hexagonal Zn1 − xMgxO decreases with corresponding increase in Mg content, which result in structure gradually deviating from wurtzite structure. The tuning of the band gap was obtained from 3.58 to 6.16 eV with corresponding increase in Mg content. The photoluminescence results also revealed the shift in ultraviolet peak position towards the higher energy side.  相似文献   

8.
Cd1 − xZnxTe films were prepared by radio frequency (r.f.) magnetron sputtering from Cd0.9Zn0.1Te slices target with different sputtering power (60-120 W). The effects of sputtering power on the properties of Cd1 − xZnxTe films were studied using X-ray diffraction (XRD), energy dispersive X-ray (EDX), atomic force microscopy (AFM), ultraviolet spectrophotometer and Hall effect measurements. The composition of the deposited films was determined by EDX. The Cd content was found always to be higher than the Te content, regardless of sputtering power. This behavior may be explained by the preferential sputtering of cadmium atoms in the target. XRD studies suggest that ZnTe secondary phases were coexisted in Cd1 − xZnxTe films. The origin of the secondary phase is ascribed to the lowest sticking coefficient of Zn atom. AFM micrographs show that the grain size increases with the sputtering power. The optical transmission data indicate that shallow absorption edge occurs in the range of 750-850 nm, and the sputtering power does not have a clear effect on the optical absorption coefficient. In Hall Effect measurements, the sheet resistivities of the deposited films are 1.988 × 108, 8.134 × 107, 8.088 × 107 and 3.069 × 107 Ω/sq, respectively, which increase with the increasing of sputtering power.  相似文献   

9.
The growth and properties of delafossites CuCr1 − xMgxO2 thin films are examined. These films are grown by pulsed laser deposition. As a class of materials delafossites have received recent interest since some members show p-type behavior. While not considered true wide-bandgap materials due to a narrow indirect bandgap that fails to adsorb light due to a forbidden same parity transition, optical transparencies greater than 40% in the visible can be observed. In order to be useful for transparent device applications, CuCr1 − xMgxO2 films are needed with low resistivity and high optical transparency. Epitaxial films of CuCr1 − xMgxO2 were grown on c-sapphire, examining the effects of oxygen pressure and growth temperature on film properties. Films were realized with resistivity of ~ 0.02 Ω-cm and optical transparency of 40% in the visible. The formation of a problematic secondary minority spinel phase of (Cu,Mg)Cr2O4 is discussed. While conductivity increases substantially with Mg doping, the incidence of the spinel phase increases as well.  相似文献   

10.
The Al doping effects on high-frequency magneto-electric properties of Zn1 − x − yAlxCoyO (x = 0-10.65 at.%) thin films were systematically studied. In the current work, the Zn1 − x − yAlxCoyO thin films were deposited by magnetron co-sputtering onto quartz substrates. The magneto-impedance spectra of the thin films were measured by an impedance analyzer. Among all the doped films studied, the thin film with 6.03 at.% Al-doping showed the highest ac conductivity and relaxation frequency. To characterize the relaxation mechanism underlying the magneto-electric properties, a Cole-Cole impedance model was applied to analyze the impedance spectra. The analyzed result showed that the magneto-impedance of the Zn1 − x − yAlxCoyO is contributed by multiple processes of magnetization dynamics and dielectric relaxation. The results imply that Zn1 − x − yAlxCoyO may be applicable for high-frequency magneto-electric devices.  相似文献   

11.
Mixed (CuO)x(ZnO)1 − x composite films have been prepared on glass substrates by a sol-gel spin coating method using copper acetate hydrate and zinc acetate dihydrate as precursors. The surface morphology and crystal structure of the films were investigated by field emission scanning electron microscopy and x-ray diffraction, respectively. It was observed that the crystal structure changed from wurtzite (ZnO) to monoclinic (CuO) as the Cu content increased from 0% to 100% in the films. UV-Vis absorption and photoluminescence measurements indicated that the optical properties can be tuned continuously from pure ZnO to pure CuO as the Cu content was increased, following the expected trends for a transition from ZnO to CuO. The resistivity of the films decreased by three orders of magnitude as Cu increased from 0% to 100%. These semiconducting composite oxides with tunable optical and electrical properties have potential applications in electronics and optoelectronics.  相似文献   

12.
Transparent conducting thin films of Al-doped and Ga-doped Zn1 − xMgxO with arbitrary Mg content x were deposited on glass substrates by simultaneous RF-magnetron sputtering of doped ZnO and MgO targets, and their fundamental properties were characterized. MgO phase separation in Zn1 − xMgxO films was not detected by X-ray diffraction. The Zn1 − xMgxO films show high optical transparency in the visible region. Although the carrier density of the Zn1  xMgxO films decreased with increasing x, the Zn1 − xMgxO films showed good electrical conductivity; electrical resistivity as low as 8 × 10− 4 Ω ·cm was achieved for the Zn0.9Mg0.1O:Ga thin film.  相似文献   

13.
Xiaofei Han  Zhude Xu 《Thin solid films》2009,517(19):5653-989
Cd1 − xZnxO nanocrystalline thin films with rock-salt structure were obtained through thermal decomposition of Cd1 − xZnxO2 (x = 0, 0.37, 0.57, 1) thin films which were electrodeposited from aqueous solution at room temperature. X-ray diffraction results showed that the Zn ions were incorporated into rock salt-structure of CdO and the crystal lattice parameters decreased with the increase of Zn contents. The bandgaps of the Cd1 − xZnxO thin films were obtained from optical transmission and were 2.40, 2.51, 2.63 and 3.25 eV, respectively.  相似文献   

14.
Thin films of ferroelectric relaxor Pb1 − 3x/2LaxZr0.2Ti0.8O3, x = 0.22 have been integrated in an oxidic heterostructure for electro-optical investigations. The quadratic electro-optic behavior and optical properties have been studied by means of variable angle spectroscopic ellipsometry method in reflection mode. Birefringence values up to δΔ = 0.17° have been obtained for quadratic compositions at λ = 540 nm and 65° angle of incidence. Structural, chemical and morphologic properties of Pb1-3x/2LaxZr0.2Ti0.8O3 (x = 0.22) thin films have been investigated by x-ray diffraction and atomic force microscopy techniques. The dielectric and ferroelectric behavior has been investigated using dielectric spectroscopy and a ferroelectric test system.  相似文献   

15.
In this work, we report a study of the optical properties measured through spectral transmission and spectroscopic ellipsometry in Ge:H and GeYSi1 − Y:H (Y ≈ 0.97) films deposited by low frequency (LF) PE CVD with hydrogen (H) dilution. The dilution was varied in the range of R = 20 to 80. It was observed that H-dilution influences in a different way on the interface and bulk optical properties, which also depend on incorporation of silicon. The films with low band tail characterized by its Urbach energy, EU, and defect absorption, αD, have been obtained in Ge:H films for R = 50 with EU = 0.040 eV and αD = 2 × 103 cm− 1 (hν ≈ 1.04 eV), and in GeYSi1 − Y:H films for R=75 with EU = 0.030 eV and αD = 5 × 102 cm− 1 (hν ≈ 1.04 eV).  相似文献   

16.
The optical and electrical properties of vapour phase grown crystals of diluted magnetic semiconductor Zn1 − xCrxTe were investigated for 0 ≤ x ≤ 0.005. The diffuse reflectance spectra exhibited an increase in the fundamental absorption edge (E0) with composition x and were also dominated by a broad absorption band around 5200 cm− 1 arising from 5T2 → 5E transition. The 5T2 and 5E levels originate from the crystal field splitting of the 5D free ion in the ground state. The electrical resistivity measurements revealed semiconducting behaviour of the samples with p-type conductivity in the temperature range of 200-450 K.  相似文献   

17.
Pb(ZrxTi1 − x)O3 (x = 0.35, 0.40, 0.60, 0.65) thin films were prepared by sol-gel spin on technique. From the X-ray diffraction analysis, PZT films with Zr-rich compositions (x = 0.60 and 0.65) had (111) preferential orientation and the preferential orientation changed to (100) for Ti-rich compositions (x = 0.35 and 0.40). The dielectric measurements on the above compositions at room temperature showed that the dielectric constant values were higher in Zr-rich compositions compared to Ti-rich compositions. The ferroelectric behavior measured in terms of the remnant polarization (Pr) and coercive field (Ec) up to an applied field of 260 kV/cm depicted that the Zr-rich PZT films with (111) preferential orientation had higher Pr and lower Ec values compared to the Ti-rich PZT films with (100) preferential orientation can be understood from the domain switching mechanism.  相似文献   

18.
Zn1−xMgxS (0 ≤ x ≤ 0.55) quantum dots (QDs) were successfully synthesized by precipitation method. The crystal structures, microstructures, and optical properties of the Zn1−xMgxS QDs were investigated using X-ray diffraction, scanning electron microscopy, and ultraviolet-visible and photoluminescence (PL) spectroscopy. The Zn1−xMgxS QDs were found to have a cubic crystal structure and an average crystallite size of 6.40-7.96 nm. It has been shown that an increase in doping Mg2+ concentration in Zn1−xMgxS QDs led to a gradual widening of the band gap and a weakening in the PL intensity of the Zn1−xMgxS QDs.  相似文献   

19.
To examine variations in the transparent conducting properties after annealing at high temperatures, 300-nm thick Sb-doped Sn1 − xHfxO2 (x = 0.00-0.10) films were deposited onto silica glass substrates by the RF sputtering method and annealed in air up to 1000 °C at 200 °C increments. After annealing, all the Sb-doped SnO2 films were transparent and electrically conductive, but large cracks, which decreased the electrical conductivity, were generated in several films due to crystallization or the thermal expansion difference between the film and substrate. Only the film deposited at room temperature in an Ar and O2 mixed atmosphere did not crack after annealing, and its electrical conductivity exceeded 100 S cm− 1 even after annealing at 1000 °C in air. Hf-doping blue shifted the fundamental absorption edges in the UV region in the Sb-doped Sn1 − xHfxO2 films. Additionally, the optical transmission at 310 nm, T310, increased as the Hf concentration increased, whereas the electrical conductivity was inversely proportional to the Hf concentration. On the other hand, thinner films (150-nm thick) with x = 0.00 showed both a high electrical conductivity over 100 S cm− 1 and a high transparency T310 = 65% after high temperature annealing.  相似文献   

20.
Low-temperature (~ 250 °C) layer exchange crystallization of poly-Si1 − xGex (x = 1-0) films on insulators has been investigated for realization of advanced flexible devices. We propose utilization of Au as catalyst to enhance the crystallization at low temperatures. By annealing (~ 250 °C, 20 h) of the a-Si1 − xGex (x = 1-0)/Au stacked structures formed on insulating substrates, the SiGe and Au layers exchange their positions, and Au/poly-SiGe stacked structures are obtained. The Ge fractions of the obtained poly-SiGe layers are identical to that of the initial a-SiGe layers, and there is no Si or Ge segregation. This low temperature crystallization technique enables poly-SiGe films on plastic substrates, which are essential to realize advanced flexible devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号