首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complete crystallization process of mold slag in the crucible (inner diameter: 6.2 mm) was successfully recorded in situ using a digital optical microscope and image processing software in an infrared furnace (IR-MOP). The crystallization behavior of non-volatile mold slag tested with the new method is consistent with the findings of differential scanning calorimetry (DSC) analysis. Although the volatilization ratios of volatile mold slag during both DSC and SHTT experiments are greater than 8%, it is less than 1.2% during IR-MOP experiments equipped with an isolated observation system, which explains why the difference in the initial crystallization temperature measured by the three methods was very large. Therefore, IR-MOP equipped with an isolated observation system can record and accurately measure the crystallization behavior of volatile mold slag.  相似文献   

2.
介绍使用光学显微镜观察轻质碳酸钙晶体的方法。此法操作简便、直观,可用于轻质碳酸钙新产品研制和生产中及对轻质碳酸钙的结晶形状、晶体大小和均匀性的观察。  相似文献   

3.
This study describes in situ observation of crystallization in a spherulite of blends of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [PHBV] and poly(3-hydroxybutyrate-co-3-hydroxypropionate) [PHBP] by FTIR microscopy. In order to trace the crystallization processes of blend components separately, PHBV was deuterated. The C-D and CO stretching bands in the IR spectra, respectively, show the crystallization behavior of PHBV and the whole blend. D-PHBV containing 6 and 8% HV [D-PHBV6 and D-PHBV8] are blended with PHBP containing 11% HP [PHBP11]. The crystallization rates of D-PHBV6, D-PHBV8 and PHBP11 decrease in this order. In case of the blend of D-PHBV8 and PHBP11 the crystalline peaks of C-D and CO bands grows simultaneously during crystallization, and the growth rates are rather close to that of D-PHBV8. The results indicate that D-PHBV8, which is the component that shows higher crystallization rate in the pure state, leads the cocrystallization of the blend. For D-PHBV6/PHBP11, on the other hand, the crystalline peak of C-D band grows faster than that of CO band, indicating that the crystallization of D-PHBV6 proceeds before the crystallization of PHBP11. During the crystallization of D-PHBV6, PHBP11 molecules get away from the growing front of the spherulite, i.e. the phase segregation precedes the crystallization. These results demonstrate that FTIR microscopy is a powerful tool to trace the formation of different crystalline phases, such as cocrystallization and phase segregation.  相似文献   

4.
Environmental scanning electron microscope (ESEM) was used to in situ quantitatively study the hydration process of K-PS geopolymer cement under an 80% RH environment. An energy dispersion X-ray analysis (EDXA) was also employed to distinguish the chemical composition of hydration product. The ESEM micrographs showed that metakaolin particles pack loosely at 10 min after mixing, resulting in the existence of many large voids. As hydration proceeds, a lot of gels were seen and gradually precipitated on the surfaces of these particles. At later stage, these particles were wrapped by thick gel layers and their interspaces were almost completely filled. The corresponding EDXA results illustrated that the molar ratios of K/Al increase while Si/Al decrease with the development of hydration. As a result, the molar ratios of K/Al and Si/Al of hydration products at an age of 4 h amounted to 0.99 and 1.49, respectively, which were close to the theoretical values (K/Al=1.0, Si/Al=1.0 for K-PS geopolymer cement paste). In addition, well-developed crystals could not been found at any ages; instead, spongelike amorphous gels were always been observed.  相似文献   

5.
We examined dynamic behavior of field-emitting carbon nanotubes (CNTs) by in situ transmission electron microscopy (TEM). CNTs employed in the present study were multi-wall CNTs prepared by chemical vapor deposition, double-wall and single-wall CNTs produced by arc discharge. Orientation of CNTs, being random when no electric field was applied, were aligned parallel to the electric field and returned reversibly to their original direction when the field was turned off. In addition to this reversible behavior without serious structural damage in CNTs, sublimation and violent oscillation of CNTs were observed. When CNTs were bundled, branching of the bundle by electric static force was also observed.  相似文献   

6.
Using the magnetic susceptibility measurements (MSM) at high temperature and in situ video observation, the mechanism of seeded infiltration growth (SIG) process was investigated. This process offers the opportunity to verify the main phase transition by measuring the magnetic force acting on the sample. The heat treatment process which adjusted from MSM and video observation, allows to obtain the single domain YBCO superconductor.  相似文献   

7.
The coordination and oxidation states of surface vanadia species on different oxide supports were studied by in situ UV–Vis DRS and in situ Raman spectroscopy. Surface vanadia species remain essentially oxidized during the steady-state ethane oxidation reaction. Polymeric surface vanadia species are more reducible than isolated ones, but this has only a minor effect on the ethane oxidation reactions. It appears that only one surface V site is involved in the rate-determining step for ethane oxidation. The reducibility of supported vanadium oxide species corresponds with the TOF values, but not with the average oxidation state under steady-state reaction. Ceria- and niobia-supported vanadia catalysts do not follow this trend due to solid-state reaction between the surface vanadia species and the oxide support that decreases the number of exposed vanadia sites. This solid-state reaction does not appear to affect the nature of the active site, which is associated with the V–O–Support bond rather than with the terminal V=O bond.  相似文献   

8.
Measurement of particle size and shape by FBRM and in situ microscopy   总被引:1,自引:0,他引:1  
In this work a model is defined allowing for a rapid calculation of chord length distributions as well as the prediction of in situ microscopy data. Both calculations are done using the same underlying algorithm. The model assumes convex polyhedral particles that are defined by their vertices only, connected by straight lines, but imposes no further restrictions on particle geometry. Due to its speed, the model can easily be used for the prediction of experimental data from in situ monitoring tools based on whole particle populations, also with non-constant shape. The model has been verified using in situ microscopy to characterize a population of disc shaped particles.The applications of the model are focused on crystallization processes, but are not limited to these. Several relations between data measured by in situ instruments and the underlying multidimensional particle size distribution have been derived. The model is used extensively in a method that is presented allowing for the calculation of bidimensional growth rates from Focused Beam Reflectance Measurement or in situ microscopy measurements.  相似文献   

9.
NMR imaging (MRI) was used to study the distribution of the liquid phase in an operating trickle bed reactor using hydrogenation of -methylstyrene or n-octene-1 as representative examples. In a single pellet reactor, the existence of oscillating regimes under unchanged external conditions was shown. The experiments with packed beds have demonstrated the non-uniform distribution of the liquid phase over the bed, the presence of partially liquid-filled or completely dry catalyst particles in the operating reactor, and the existence of liquid phase transport between liquid-filled and dry catalyst particles. Detection of spatially resolved NMR spectra was used to characterize chemical conversion variations within the operating reactor. Preliminary MRI results for an operating monolithic reactor were obtained. It was found that MRI can be used to directly image solid materials using NMR signal detection of nuclei other than 1H. In particular, imaging of alumina using 27Al NMR signal appears highly promising for the development of novel MRI applications in chemical engineering and catalysis, including spatially resolved NMR thermometry.  相似文献   

10.
Capillary infiltration is an innovative fabrication method for metal and ceramic-matrix composites. SiC/SiC composites can be infiltrated by molten silicon to decrease residual porosity. Physical and chemical mechanisms involved during Liquid Silicon Infiltration (LSI) are complex to analyse. An in situ observation setup for capillary infiltration of molten silicon has been designed for synchrotron observations. The setup reproduces the extreme high temperature and high vacuum conditions used in the LSI process. It is also designed for X-ray observations in synchrotron beamlines and tomography stages. Sets of 2D X-ray absorption radiographs were acquired at high frequency during the LSI process. The study outlines the capillary infiltration mechanisms of molten silicon inside SiC/SiC composites. It proves that full saturation of the composite is not directly achieved after the rise of molten silicon. It is a two step mechanism. First, the infiltration occurs inside the intra granular porosity of the SiC powder matrix. Then, larger scale porosities such as cracks are filled. These phenomena have been discussed previously in the literature but never observed in situ.  相似文献   

11.
In situ modulus and strength of carbon fibers in C/SiC composites   总被引:1,自引:0,他引:1  
《Ceramics International》2017,43(9):6885-6890
The in situ elastic modulus and strength distribution of carbon fibers in C/SiC composites were studied. To obtain the in situ property data, fibers were heat treated according to the fabrication process of C/SiC composites. Tensile tests were performed on the single fibers and fiber bundles. The equivalent in situ modulus and strength were proposed considering the loose and unparallel fibers in the composites. The experimental and numerical results showed that the equivalent elastic modulus and average strength of in situ fibers are much lower than that of the original fibers. In addition, the equivalent strength distribution of in situ fibers is more dispersive.  相似文献   

12.
Hydroxyapatite (HAp) crystals were prepared via an in situ biomimetic process in the presence of poly(vinyl alcohol) (PVA). The effect of polymer amount and its molecular weight on the physical properties of the HAp crystals were investigated. X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR) analysis, confirmed the formation of the crystalline HAp at room temperature. Microstructural features such as size and morphology of the resulting HAp samples were characterized using BET, scanning and transmission electron microscopy. The results indicate that the development (size and shape) of the HAp nanocrystals precipitated in an aqueous solution of PVA was influenced by the molecular weight of the polymer in such a way that smallest crystallite size was observed in the case of PVA with the highest molecular weight. It is believed that the HAp formation was initiated through the interaction of Ca2+ ions with the negative side groups on the polymer surface. The larger number of reaction sites in the PVA polymer with higher molecular weight led to a higher number of HAp nuclei and therefore smaller crystallite size.  相似文献   

13.
In situ Fourier Transform Infrared Spectroscopy measurements were performed using an innovative equipment to study the surface modification reaction between a functionalized porous MSQ-film and hexamethyldisilazane (HMDS) dissolved in CO2 at supercritical conditions (scCO2). scCO2 was used in the heterogeneous reaction due to enhancing properties, ideal for porous materials. Different infrared signatures, from the gas and solid phases, were observed and identified, implying gas–gas and solid–gas phase reactions. Among the different component signatures observed in the gas phase, carbonic acid was observed as a possible silylating gas phase nucleophilic component, while in the solid phase the predominant reaction mechanism proceeded by forming SiOSi bonds and Trimethylaminosilane (as gas phase product).  相似文献   

14.
The oxide films of nickel electrode formed in 30 wt.% KOH solution under potentiodynamic conditions were characterized by means of electrochemical, in situ PhotoElectrochemistry Measurement (PEM) and Confocal Microprobe Raman spectroscopic techniques. The results showed that a composite oxide film was produced on nickel electrode, in which aroused cathodic or anodic photocurrent depending upon polarization potentials. The cathodic photocurrent at −0.8 V was raised from the amorphous film containing nickel hydroxide and nickel monoxide, and mainly attributed to the formation of NiO through the separation of the cavity and electron when laser light irradiates nickel electrode. With the potential increasing to more positive values, Ni3O4 and high-valence nickel oxides with the structure of NiO2 were formed successively. The composite film formed in positive potential aroused anodic photocurrent from 0.33 V. The anodic photocurrent was attributed the formation of oxygen through the cavity reaction with hydroxyl on solution interface. In addition, it is demonstrated that the reduction resultants of high-valence nickel oxides were amorphous, and the oxide film could not be reduced completely. A stable oxide film could be gradually formed on the surface of nickel electrode with the cycling and aging in 30 wt.% KOH solution.  相似文献   

15.
Anodizing of niobium has been investigated to develop niobium solid electrolytic capacitors. Chemically polished niobium specimens were anodized in a diluted phosphoric acid solution, initially galvanostatically at ia = 4 A m−2 up to Ea = 100 V, and then potentiostatically at Ea = 100 V for tpa = 43.2 ks. During the galvanostatic anodizing, the anode potential increased almost linearly with time, while, during potentiostatic anodizing, the anodic current decreased up to tpa = 3.6 ks, and then increased slowly before decreasing again after tpa = 30.0 ks. Images of FE-SEM and in situ AFM showed that nuclei of imperfections were formed at the ridge of cell structures before tpa = 3.6 ks. After formation, the imperfection nuclei grew, showing cracking and rolling-up of the anodic oxide film, and crystalline oxide was formed at the center of imperfections after tpa = 3.6 ks. The growth of imperfections caused increases in the anodic current between tpa = 3.6 and 30.0 ks. Long-term anodizing caused a coalescence of the imperfections, leading to decreases in the anodic current after tpa = 30.0 ks. As the imperfections grew, the dielectric dispersion of the anodic oxide films became serious, showing a bias voltage dependence of the parallel equivalent capacitance, Cp, and a dielectric dissipation factor, tan δ. The mechanism of formation and growth of the imperfections, and the correlation between the structure and dielectric properties of anodic oxide films is discussed.  相似文献   

16.
Sn-filled carbon nanofibres (CNFs) are fabricated by microwave plasma chemical deposition. Scanning electron microscopy observations revealed the existence of a Sn island under the CNFs. The structure of the CNFs is investigated, and the behaviour of Sn in the internal space of CNFs is revealed by performing in situ heating observations by environmental transmission electron microscopy (ETEM). ETEM observations reveal that they have low-crystallized carbon wall and Sn occupies not only the CNF’s internal space but also its carbon wall. The Sn inside the CNF is completely covered by the carbon wall. Further, the in situ heating observations reveal that Sn within the internal space and the carbon wall of the CNFs diffused to the outside during heating. Moreover, it is found that higher membered carbon rings and defects in the graphite layer act as diffusion routes between disordered carbon layers.  相似文献   

17.
Nanocomposites of poly(ethylene terephthalate) (PET) with C12PPh-MMT as an organoclay were synthesized by using the in situ interlayer polymerization approach. The PET nanocomposites were melt-spun at different organoclay contents and different draw ratios to produce monofilaments. The thermo-mechanical properties and the morphologies of the PET nanocomposites were examined by using a differential scanning calorimeter, a thermogravimetric analyzer, a wide angle X-ray diffactometer, scanning and transmission electron microscopes, and a universal tensile machine. Some of the clay particles were well dispersed in the PET matrix, and some of them were agglomerated at a size level of greater than approximately 10 nm. The thermal stability and the tensile mechanical properties of the PET hybrid fibers increased with increasing clay content at a DR=1. However, the values of the ultimate tensile strength and the initial modulus of the hybrid fibers decreased markedly with increasing DR from 1 to 16.  相似文献   

18.
In situ Raman spectroscopy, electrochemical impedance spectroscopy (EIS) and polarization curves were used to study the corrosion behavior of reinforcing steel in simulated concrete pore (SCP) solutions (saturated Ca(OH)2 solutions). Results indicated that the reinforcing steel remained passive in chloride-free SCP solutions. However, the anodic polarization curve of the steel did not exhibit a stable passive region in the SCP solution with 0.5 M NaCl, the corrosion current density exceeded 0.1 μA cm−2, the steel surface was unstable with chloride attack and localized corrosion appeared on it with FeCO3 and Fe2O3 as the main corrosion products.  相似文献   

19.
The corrosion of single crystal pure iron in 3.5% NaCl solutions and its inhibition by 3-amino-5-mercapto-1,2,4-triazole (AMTA) have been studied using in situ and ex situ Raman spectroscopy, cyclic voltammetry (CV), open-circuit potential (OCP), potentiodynamic polarization (PDP), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS) measurements. CV experiments indicated that the iron electrode in the chloride solution alone showed an anodic peak at ∼−650 mV after the 5th cycle shifted to ∼−610 mV after the 20th cycle; another cathodic peak appeared at ∼−990 mV. In the presence of 1.0 mM AMTA, these two peaks shifted to ∼550 and −1050 mV, respectively. OCP, PDP, CA and EIS revealed that the presence of AMTA and the increase of its concentration move the corrosion potential to more positive values and decrease both the corrosion current and corrosion rate. This effect also increases with increasing the immersion time of iron electrode to 24 h in the test electrolyte. In situ and ex situ Raman investigations confirmed that the addition of AMTA molecules to the chloride solution strongly inhibits the iron corrosion through their adsorption onto the surface blocking its active sites and preventing its corrosion.  相似文献   

20.
An important issue in the area of geological disposal of high-level radioactive waste (HLW) is to demonstrate the long-term mechanical stability of the buffer. In particular, it has to be clarified whether a waste package would continue to sink in the buffer over a long time period, resulting in a significant decrease in the buffer thickness. The candidate buffer material in Japan is a mixture of silica sand and bentonite. Consolidation tests have revealed that the bentonite shows secondary consolidation phenomena similar to clay in general. Therefore, it is important to investigate the mechanism of secondary consolidation behavior.Bentonite is a microinhomogeneous material consisting of clay minerals, macrograins (mainly quartz) and others. The unique combination of molecular dynamics (MD) and homogenization analysis (HA) procedures, termed the unified MD/HA method, has been proposed for estimating the micro to macro behavior of such an inhomogeneous material (Ichikawa, Y., Kawamura, K., Nakano, M., Kitayama, K., Kawamura, H., 1998. Unified molecular dynamics/homogenization analysis for water flow in bentonite. Proc. 1998 Int. High-Level Radioactive Waste Management Conf., Las Vegas. American Nuclear Society, La Grange Park, IL, pp. 422–428). In this study, the unified MD/HA method is applied to bentonite in order to understand its long-term consolidation mechanism. Thus, it was found that the permeability decreases significantly with a decrease in the void ratio due to the evolution of consolidation. It was therefore assumed that secondary consolidation is governed by drainage from the interlayer pores (micropores) with very low permeability, and that this is the reason why secondary consolidation is very slow.This paper also documents the result of an X-ray diffraction (XRD) experiment on bentonite under consolidation (in situ XRD), which was performed in order to validate the assumption mentioned above. It was observed that interlayer space starts to decrease after the latter half of primary consolidation. This finding strongly supports the long-term consolidation mechanism presumed above from a microscopic point of view.One-dimensional consolidation analyses of the bentonite, into which the relationship between the void ratio and the permeability determined using the unified MD/HA method was introduced, were performed for comparison with a long-term consolidation test. The good agreement between the analytical result and the test result including secondary consolidation behavior also supports the long-term consolidation mechanism presumed above.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号