首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A process for purifying aqueous solutions containing macromolecular proteins such as bovine serum albumin (BSA), egg albumin (EA), pepsin, and trypsin has been investigated. Protein removal from food and biorelated industrial waste streams are gaining increased visibility due to environmental concern and saving precious materials. Ultrafiltration (UF) processes are largely being applied for protein separation from aqueous streams. In this work, an attempt has been made to separate the valuable proteins using cellulose acetate (CA)/sulfonated poly(ether imide) (SPEI) blend UF membranes prepared in the absence and presence of the additive, polyethyleneglycol (PEG600) in various compositions. The blend membranes were subjected to the determination of pore statistics and molecular weight cut‐off (MWCO). Porosity and pore size of the membranes increased with increasing concentrations of SPEI and PEG600 in the casting solution. Similarly, the MWCOs of the blend membranes ranged from 20 to greater than 69 kDa, depending on the various polymer blend compositions. Surface morphology of the blend membranes were analyzed using scanning electron microscopy. Studies were carried out to find the rejection and permeate flux of proteins. On increasing the concentration of SPEI and PEG600, the rejection of proteins is decreasing, whereas the permeate flux has an increasing trend. The effect of hydrophilicity of SPEI on fouling of protein for CA/SPEI blend membranes was also discussed. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

2.
A charged surface modifying macromolecule (cSMM) was synthesized, characterized by FT-IR spectroscopy and blended into the casting solution of cellulose acetate (CA) to prepare surface modified UF membranes by phase inversion technique. With an increasing cSMM additive content from 1 to 4 wt%, pure water flux (PWF) and water content (WC) were increases whereas the hydraulic resistance decreases. Surface characteristic study reveals that the surface hydrophilicity increased in cSMM modified CA membranes. The pore size and surface porosity of the 4 wt% cSMM blend CA membranes increases to 41.26 Å and 0.015%, respectively. Similarly, the molecular weight cut-off (MWCO) of the membranes ranged from 20 to 45 kDa, depending on the various compositions of the prepared membranes. Lower flux decline rate (47.2%) and higher flux recovery ratio (FRR) (89.0%), exhibited by 4 wt% cSMM blend membranes demonstrated its fouling resistant characteristic compared to pristine CA membrane.  相似文献   

3.
Synthesized by the reaction between α-cellulose and m-tolyl isocyanate (MTI), cellulose carbamate (CC) was blended with polyvinyl chloride (PVC) to fabricate substrates for thin-film composite (TFC) forward osmosis (FO) membranes. The introduction of CC into substrates improved both membrane structure and performance. The substrates exhibited higher porosity and hydrophilicity, and better connective pore structure; while rejection layer exhibited better morphology but limited cross-linked degree decrease after the introduction of CC. According to the results, the CC blend ratio of 10% was the optimal ratio. With this blend ratio, the TFC-10 membrane presented favorable water permeability (1.86 LMH/bar) and structure parameter (337 μm), which resulted in excellent FO performance (water flux with a value of 40.40 LMH and specific salt flux with a value of 0.099 g/L under rejection layer faces draw solution [DS] mode when 1 M NaCl and deionized water were utilized as DS and feed solution). In addition, the TFC-10 membrane showed good water flux and low-sulfate ion leakage in the potential application of brackish water desalination.  相似文献   

4.
Membranes were fabricated with high-density polyethylene(HDPE) and ethylene vinyl acetate(EVA) blend through thermally induced phase separation and were then used for vacuum membrane distillation(VMD).The membranes were supported by nonwoven polyester fabric with a special cellular structure. Different membrane samples were obtained by adjusting the polymer concentration, HDPE/EVA weight ratio, and coagulation bath temperature. The membranes were characterized by scanning electron microscopy(SEM) analysis, contact angle test, and evaluation of porosity and pore size distribution. A series of VMD tests were conducted using aqueous NaCl solution(0.5 mol·L~(-1)) at a feed temperature of 65 ℃ and permeate side absolute pressure of 3 kPa. The membranes showed excellent performance in water permeation flux, salt rejection, and long-term stability. The HDPE/EVA co-blending membranes exhibited the largest permeation flux of 23.87 kg·m~(-2)·h~(-1) and benign salt rejection of ≥99.9%.  相似文献   

5.
High performance polyvinylidene fluoride (PVDF) flat sheet ultrafiltration (UF) membranes have been prepared by an immersion precipitation phase inversion method using perfluorosulfonic acid (PFSA) as a pore former and as a hydrophilic component of the membranes and polyethylene glycol (Mw = 400) (PEG400) as a pore forming agent. The effects of the presence of PEG and the concentration of the PFSA on the phase separation of the casting solutions and on the morphologies and performance of UF membranes including their porosity, water flux, rejection of bovine serum albumin (BSA) protein, and anti-fouling property were investigated. Phase diagrams, viscosities and the phase separations upon exposure to water vapor showed that both PEG400 and PFSA promoted demixing of the casting solution. Scanning electron microscopy measurements showed that the PVDF-PFSA blend membranes had more macropores and finger-like structures than the native PVDF membranes. The PVDF-PFSA membrane (5 wt-% PEG400+ 5 wt-% PFSA) had a pure water flux of 141.7 L/m2·h, a BSA rejection of 90.1% and a relative pure water flux reduction (RFR) of 15.28%. These properties were greatly superior to those of the native PVDF membrane (pure water flux of 5.6 L/m2·h, BSA rejection of 96.3% and RFR of 42.86%).  相似文献   

6.
Thin-film composite nanofiltration membranes were prepared by interfacial polymerization reaction of piperazine and trimesoylchloride on virgin and nanoparticles (SiO2/TiO2) modified Polyacrylonitrile/70:30 and 30:70 Polyacrylonitrile – Polyvinylidenefluoride blend ultrafiltration substrates. The membranes were characterized for surface hydrophilicity and potential, surface and cross-sectional morphology and equilibrium water content. Pure water permeability and differential rejection of multi (MgSO4) and monovalent salts (NaCl) of the membranes were studied. Nanofiltration (NF) membranes prepared on nanoparticle modified UF substrates exhibit higher flux than the membranes prepared on virgin UF substrates. NF membranes prepared on TiO2 modified substrates are exhibiting higher flux than the other membranes. Membrane prepared on TiO2 modified 70:30 blend substrate exhibits the highest rejection ratio (4.63) of divalent to monovalent salts. Nanofiltration membranes prepared on nanoparticle modified substrates are displaying comparatively higher flux recovery ratio (FRR) and lower total fouling ratio (TFR) values than the NF membranes prepared on virgin ultrafiltration substrates.  相似文献   

7.
Recently, we have demonstrated the use of wood-derived nanocellulose papers, herein termed nanopapers, for organic solvent nanofiltration applications. In this study, we extend the use of these nanopapers to tight ultrafiltration (UF) membranes. The feasibility of such nanopaper-based UF membranes intended for use in water purification is shown. Four types of nanocelluloses, namely bacterial cellulose, wood-derived nanocellulose, TEMPO-oxidized cellulose nanofibrils and cellulose nanocrystals, were used as raw materials for the production of these nanopaper-based membranes. The resulting nanopapers exhibit a transmembrane permeance in the range of commercially available tight UF membranes with molecular weight cut-offs ranging from 6 to 25 kDa, which depends on the type of nanocellulose used. These molecular weight cut-offs correspond to average pore sizes of a few nanometres. The rejection performance of the nanopapers is on the border of nanofiltration and UF. We demonstrate that the pore size of the nanopapers can be controlled by using different types of nanocellulose fibrils.  相似文献   

8.
Three sets of ultrafiltration (UF) membranes were prepared containing the following proportions (w/w) of polysulfone and dimethylacetamide: 14.5/85.5, 15.0/85.0 and 15.5/84.5. The membranes were characterized in terms of water flux, molecular weight (MW) cut-off, fouling, average pore size and ratio of pore surface area to membrane area. Membrane water flux was found to decrease as the polysulfone concentration or membrane thickness was increased. Scanning electron microscopy showed an asymmetric pore structure and indicated that the variation in water flux between membrane sets were probably due to differences in the number of pores per unit membrane area and not to differences in pore diameter. The MW cut-off for all the membranes was found to be close to 66 kD. The permeate flux for standard proteins decreased with increasing protein MW. A decrease in water flux was also observed after the UF runs; this could be explained by membrane fouling.

Defatted waste tuna broth, which was obtained from a fish canning plant as steam condensate after autoclaving fresh tuna, was ultrafiltered using the prepared membranes. The rejection coefficient for either protein or carbohydrate solute of the tuna broth was approximately 54.5% while solute recovery was about 90%. The ultrafiltered broth had negligible turbidity and odor.  相似文献   


9.
实验表明,铸膜液浓度、PVC 分子量及其分布主要是通过它们对膜孔大小的影响来影响膜的性能。铸膜液浓度提高,膜孔缩小,截留率提高而透水率下降。这种影响在铸膜液百分浓度低于15%时尤为明显。分子量的均一则有利于膜孔的均一。聚乙二醇因其具有较多的羟基,当被添加到PVC/PAN 共混铸膜液中时,既起交联剂的作用,又起溶胀剂的作用,前者有利三维聚合物网络的形成而提高截留率,后者有利提高开放形孔所占的比例而增大透水率。  相似文献   

10.
Nanofibrous ultrafiltration membranes based on the thin-film nanofibrous composite (TFNC) format with a nanocomposite barrier layer made of cross-linked poly(ethylene glycol) (PEG) matrix and ultra-fine cellulose nanofibers (CN, ∼5 nm in diameter) were demonstrated. Physical properties, including pore size, chemical composition, morphology, hydrophilicity and surface roughness of these membranes, were characterized by filtration test, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), water contact angle measurements and atomic force microscopy (AFM). It was found the cross-linked PEG/CN barrier layer was highly hydrophilic and had excellent anti-fouling properties, which were confirmed by short-term and long-term fouling tests using bovine serum albumin (BSA) solution (1 g/L). In addition, the membranes exhibited better anti-fouling properties and recovery ability than comparable commercial membranes (e.g., Pall Life Sciences omega membranes and Koch HFK 328 membranes). For example, the flux of the composite layer was about twice as high as that of commercial membranes during the long-term testing, while the rejection was maintained above 90%.  相似文献   

11.
The effect of sodium bromide (NaBr) on performance and characteristics of ultrafiltration (UF) membranes was studied. Asymmetric UF membranes were prepared by phase inversion technique from a multicomponent dope polymer solution consisting of the polymer; polyethersulfone (PES), solvent; N, N‐dimethylformamide (DMF) and NaBr as micromolecular additive. The dissolution of PES‐DMF‐NaBr was carried out using microwave irradiation technique to induce rapid dissolution through minimal heating time. Various concentrations of NaBr were mixed with PES in the range of 1–5 wt % and its influence on membrane characteristics such as surface hydrophilicity was measured by contact angle and the performance in terms of water flux and rejection rates were evaluated using micromolecular test substances. The morphology and streaming potential of PES UF membranes were analyzed using scanning electron microscopy (SEM) and ζ‐potential measurement, respectively. Overall, the results suggest that the membrane consisting of 1 wt % NaBr exhibits the best performance in terms of rejection and flux rates with molecular weight cutoff (MWCO) of 45 kDa and mean pore size of 6 nm. The membrane with the 1 wt % addition of NaBr demonstrates most negative charge which indicates less fouling characteristics and displays approximately three times higher permeation. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

12.
Enhancement of the hydrophilicity in polymeric membrane materials results in membranes with higher flux and better membrane characteristics. Hence, polysulfone was carboxylated and ultrafiltration membranes were prepared from blends of cellulose acetate and carboxylated polysulfones having various degrees of carboxylation with a total polymer concentration of 20 wt % in casting solution and at different blend polymer compositions. The effects of degree of carboxylation on membrane characteristics such as compaction, pure water flux, and membrane hydraulic resistance (Rm) have been investigated. The influence of the polymer concentration in the blend solution on the performance of blend membranes at various blend polymer compositions has also been investigated and compared with that of blend membranes prepared from blends of cellulose acetate and polysulfone or carboxylated polysulfone with a total polymer concentration of 17.5 wt %. Further, the solute rejection performance of the membranes has also been investigated by subjecting the membranes to metal ion permeation studies using polyelectrolyte‐enhanced ultrafiltration. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 976–988, 2005  相似文献   

13.
《分离科学与技术》2012,47(16):3854-3875
Abstract

Flat sheet asymmetric polyethersulfone (PES) ultrafiltration (UF) membranes were prepared from a homogenous solution of PES via immersion precipitation in a water coagulation bath. The effect of the solvents (N-methyl-2-pyrrolidone (NMP) and N,N-dimethylformamide (DMF)) in preparation of the casting solution was studied. The effects of the molecular weight of polyethylene glycol (PEG) (400, 1500, and 6000 Da) on the morphology and the permeation properties of PES membranes were also investigated. Surface and cross-sectional morphology of the prepared membranes were studied by Scanning electron microscopy (SEM). The permeation performance of the prepared membranes was evaluated in terms of pure water flux (Jw), water content, porosity, hydraulic permeability, protein solution flux, and protein rejection. A solution of human serum albumin (HSA, Mw = 66,000 Da) was used as feed to study the permeation properties of the prepared membranes. Increasing molecular weight of PEG additives from 400 to 6000 Da enhances pure water permeation flux and HSA solution permeation flux while it reduces the protein rejection.  相似文献   

14.
In this paper, polyvinylidene fluoride (PVDF)/polymethyl acrilate (PMMA)/cellulose acetate (CA) blend UF membranes were prepared by chemical reaction introduced phase-inversion method. The results of the experiment show that: (1) The membrane pore size distribution is more uniform due to the presence of carbonates or bicarbonates in the coagulation bath; (2) No more than the stoichiometric ratio amount of carbonates or bicarbonates in the coagulation bath can effectively improve the membrane pore size distribution and make the pore size of membrane more uniform; (3) The membrane prepared by carbonates solution as a working solution in coagulation bath possess superior performance than that by bicarbonates.  相似文献   

15.
The outcomes of a pilot-scale study of the rejection of trihalomethanes (THMs) precursors by commercial ultrafiltration/nanofiltration (UF/NF) spiral-wound membrane elements are presented based on a single surface water source in Scotland. The study revealed the expected trend of increased flux and permeability with increasing pore size for the UF membranes; the NF membranes provided similar fluxes despite the lower nominal pore size. The dissolved organic carbon (DOC) passage decreased with decreasing molecular weight cut-off, with a less than one-third the passage recorded for the NF membranes than for the UF ones.

The yield (weight % total THMs per DOC) varied between 2.5% and 8% across all membranes tested, in reasonable agreement with the literature, with the aromatic polyamide membrane providing both the lowest yield and lowest DOC passage. The proportion of the hydrophobic (HPO) fraction removed was found to increase with decreasing membrane selectivity (increasing pore size), and THM generation correlated closely (R2 = 0.98) with the permeate HPO fractional concentration.  相似文献   

16.
Blend membranes of chitin/cellulose from 12 : 50 to 12 : 250 were successfully prepared from cotton linters in 1.5M NaOH/0.65M thirourea solution system. Two coagulation systems were used to compare with each other, one coagulating by 5 wt % H2SO4 (system H), and the other by 5 wt % CaCl2 and then 5 wt % H2SO4 (system C). The morphology, crystallinity, thermal stabilities, and mechanical properties of the blend membranes were investigated by electron scanning microscopy, atomic absorption spectrophotometer, infrared spectroscope, elemental analysis, X‐ray diffraction, different scanning calorimeter, and tensile tests. The cellulose/chitin blends exhibited a certain level of miscibility in the weight ratios tested. There were great differences between the two blends H coagulated with H2SO4 and C coagulated with CaCl2 and H2SO4, respectively. The membranes H have a denser structure, higher thermal stability, tensile strength (σb), and crystallinity (χc), and values of σb (90 MPa for chitin/cellulose 12 : 150) were significantly superior to that of both chitin and regenerated cellulose membrane. However, the blend membranes C have much better breaking elongations (?) than that of membranes H, and relatively large pore size (2re = 210 μm), owing to the removal of a water‐soluble calcium complex of chitin as pore former from the membranes C. When the percentage content of chitin in the blends was from 5 to 7.5%, the values of breaking elongation for the blend membranes H and C all were higher than that of unblend membranes, respectively. The blends provide a promising way for application of chitin as a functional film or fiber in wet and dry states without derivates. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2025–2032, 2002  相似文献   

17.
The development of cellulose acetate blend membranes using a commercial grade Mycell cellulose acetate and cellulose diacetate with suitable pore structure is discussed. These membranes were characterized in terms of resistance of the membrane, pure water flux, the molecular weight cutoff, water content, pore size, and porosity. The removal of copper metal ions by this blend membrane using polyethyleneimine as a chelating agent was studied. The effects of copper ion concentration and casting solution composition on separation are also discussed. A possible correlation between feed and permeate concentration of copper ion is evaluated. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:1939–1946, 1998  相似文献   

18.
In this work, polyethersulfone (PES) flat sheet ultrafiltration (UF) membranes were prepared by immersion precipitation phase inversion process with polyvinylpyrrolidone (PVP 30K) and acetone as additives. The best preparation condition for PES membranes with high water flux and rejection (to BSA) was decided. It was found that the optimal composition of the polymer casting solution was: 16 wt% (PES), 2 wt% (PVP 30K), and 1 wt% (acetone). Pure water flux of the membrane prepared at this condition reached to 373 L/m2 h at 0.1 MPa, and the rejection to BSA was 91%. Compared with other reports, the rejection was slightly low but the flux of the PES membrane was high. When the membrane was used to concentrate gelatin solutions, the rejection value was over 75%. It was found that increasing the feed temperature and transmembrane pressure enhanced the permeation flux, but the rejection decreased slightly. However, increasing the cross-flow velocity of the feed solution simultaneously increased both the permeation flux and the rejection.  相似文献   

19.
To develop high-flux and high-rejection forward osmosis (FO) membranes for water reuses and seawater desalination, we have fabricated polybenzimidazole (PBI) nanofiltration (NF) hollow fiber membranes with a thin wall and a desired pore size via non-solvent induced phase inversion and chemically cross-linking modification. The cross-linking by p-xylylene dichloride can finely tune the mean pore size and enhance the salt selectivity. High water permeation flux and improved salt selectivity for water reuses were achieved by using the 2-h modified PBI NF membrane which has a narrow pore size distribution. Cross-linking at a longer time produces even a lower salt permeation flux potentially suitable for desalination but at the expense of permeation flux due to tightened pore sizes. It is found that draw solution concentration and membrane orientations are main factors determining the water permeation flux. In addition, effects of membrane morphology and operation conditions on water and salt transport through membrane have been investigated.  相似文献   

20.
Phase inversion method was used to prepare polyethersulfone (PES) ultrafiltration (UF) membranes. Polyethylene glycol (PEG); N, N-dimethyl formamide (DMF) and water were utilized as pore-forming additive, solvent and non-solvent, respectively. Effects of PES and PEG concentrations in the casting solution, PEG molecular weight (MW) and coagulation bath temperature (CBT) on morphology of the prepared membranes were investigated. Taguchi experimental design was applied to run a minimum number of experiments. 18 membranes were synthesized and their permeation and rejection properties to pure water and human serum albumin (HSA) solution were studied. It was found out that increasing PEG concentration, PEG MW and CBT, accelerates diffusional exchange rate of solvent (DMF) and non-solvent (water) and consequently facilitates formation of macrovoids in the membrane structure. The results showed that, increasing PES concentration, however, slows down the demixing process. This prevents instantaneous growth of nucleuses in the membrane structure. Hence, a large number of small nucleuses are created and distributed throughout the polymer film and denser membranes are synthesized. A trade-off between water permeation and HSA rejection was involved, with membranes having higher water permeation exhibited lower HSA rejection, and vice versa. Hence, optimizing preparation variables to achieve high pure water permeation flux along with reasonable HSA rejection was inevitable. Analysis of variance (ANOVA) showed that all parameters have significant effects on the response (water flux and HSA rejection). However, CBT and PES concentration were more influential factors than PEG concentration and MW on the responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号