首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure, dispersibility, and crystallinity of poly(3-hydroxybutyrate) (PHB) and poly(l-lactic acid) (PLLA) blends are investigated by using Raman microspectroscopy. Four kinds of PHB/PLLA blends with a PLLA content of 20, 40, 60, and 80 wt% were prepared from chloroform solutions. Differences in the Raman microspectroscopic spectra between the spherulitic and nonspherulitic parts in the blends mainly lie in the CO stretching band and C-O-C and C-C skeletal stretching bands of PHB and PLLA. In addition to such bands, the Raman spectra of spherulitic structure in the blends show a band due to the CH3 asymmetric stretching mode at an unusually high frequency (3009 cm−1), suggesting the existence of a C-H?OC hydrogen bond of PHB in the spherulite. The existence of C-H?OC hydrogen bond is one of the unambiguous evidence for the crystallization of PHB component in the blends. Therefore, it is possible to distinguish Raman bands due to each component in the spectra of blends. Raman spectra of the spherulitic structure in the blends are similar to a Raman spectrum of pure crystalline PHB, while those of the nonspherulitic parts in the blends have each component peak of PHB and PLLA. The present study reveals that the PHB component is crystallized in the blends irrespective of the blend ratio, and that both components are mixed in the nonspherulite parts. The crystalline structure of PHB and the nonspherulitic parts of PLLA in the blends are characterized, respectively, by the unique band of C-H?OC hydrogen bond at 3009 cm−1 and CCO deformation bands near 400 cm−1.  相似文献   

2.
3.
He Huang  Lixia Gu 《Polymer》2006,47(11):3935-3945
A study has been made of the non-isothermal crystallization behavior and thermal transitions of a biodegradable, partially hydrolyzed poly(vinyl alcohol) with 80% degree of saponification (PVA80). Possible sample degradation was first investigated, but no significant degradation or dehydration was detected using FTIR and DSC under the experimental condition. The non-isothermal crystallization of PVA80 was analyzed with Ozawa equation, and the Mo method of combining Ozawa and Avrami equations. Ozawa equation was only applicable in a narrow temperature range from 80 to 100 °C. The deviation from the Ozawa equation is not due to the secondary crystallization or the quasi-isothermal nature of the treatment. It is only a result of the large relative difference of the relative crystallinity values under different cooling rates. The Mo method demonstrated a success in the full temperature range investigated. The isoconversional method developed by Friedman failed to estimate the activation energy for this non-isothermal crystallization. Thermal transitions of PVA80 are associated with its complex hydrogen-bonding interactions. The melt-crystallized PVA80 sample, as that from film casting, followed by annealing at 60 and 80 °C, has a broad melting temperature range measured by DSC and FTIR. It was found that the melting behavior of a semicrystalline polymer can be probed via a non-crystalline hydrogen-bonded CO band using FTIR. The glass transition temperature Tg of PVA80 was raised about 20 °C, after the sample was melt-crystallized. The intensity of the hydrogen-bonded CO band increases when temperature was increased from 110 to 180 °C, due to the promoted hydrogen-bonding interactions between the CO groups in the amorphous phase and the hydroxyl groups from the crystalline phase, which is also the main reason for the increased Tg transition.  相似文献   

4.
5.
6.
Hydrophobic-hydrolysable copolymers consisting of methyl methacrylate (MMA) and tert-butyldimethylsilyl methacrylate (TBDMSMA) have been synthesized for the first time by Reversible Addition-Fragmentation chain Transfer (RAFT) polymerization technique using cumyl dithiobenzoate (CDB) and cyanoisopropyl dithiobenzoate (CPDB) as chain transfer agents (CTAs). The monomer reactivity ratios for TBDMSMA (r1 = 1.40 ± 0.03) and MMA (r2 = 1.08 ± 0.03) have been determined using a non-linear least-squares fitting method. Well-defined random copolymers PMMA-co-PTBDMSMA have been prepared. Then, the versatility of the RAFT process to synthesize silylated block copolymers with controlled molecular weights and low polydispersities has been demonstrated using two strategies: the synthesis of PMMA-SC(S)Ph or PTBDMSMA-SC(S)Ph as macro-chain transfer agent (macro-CTA) for use in a two step method or an one-pot method which consists in the successive addition of the two monomers. Diblock copolymers with narrow molecular weight distributions (PDI < 1.2) were obtained from the one-pot method with number-average molecular weight values within the range 10,000-22,000 g mol−1.  相似文献   

7.
Po-Chih Yang 《Polymer》2008,49(12):2845-2856
In order to study the photoreactivity and the optical properties of liquid crystalline copolymers with multiple photochromic groups, a series of novel liquid crystalline binary and ternary polyacrylates consisting of one (CC or NN) or dual (CC and NN) photochromic segments were synthesized and characterized considering their liquid crystalline, optical, and photochromic properties and their thermal stability. Achiral homopolymer P1 shows a smectic A phase (fan-shaped texture), and all chiral copolymers CP1-CP6 exhibit chiral nematic phases (cholesteric, oily streaks textures). The polymers show excellent solubility in common organic solvents such as chloroform, toluene, and THF. These polymers also exhibit good thermal stability, with decomposition temperatures (Tds) greater than 373 °C at 5% weight loss, and beyond 440 °C at 50% weight loss under nitrogen atmosphere. UV irradiation caused E/Z photoisomerization at NN and CC segments of the synthesized photochromic copolymers leading to reversible and irreversible isomerizations, respectively. The synthesized liquid crystalline ternary copolymer CP6, containing two different photochromic NN and CC groups, is sensitive to different UV wavelengths and is notably interesting from the viewpoint of photochromic copolymers.  相似文献   

8.
Catalytic oxidation of nitric oxide and nitrite by water-soluble manganese(III) meso-tetrakis(N-methylpyridinium-4-yl) porphyrin (Mn(III)(4-TMPyP) was first studied at an indium-tin oxide (ITO) electrode in pH 7.4 phosphate buffer solutions. A stepwise oxidation of Mn(III)(4-TMPyP) through high-valent manganese porphyrin species has been observed by electrochemical and spectroelectrochemical (OTTLE) techniques. The formal potential of 0.63 V for the formation of OMn(IV)(4-TMPyP) has been estimated from OTTLE data. The product, oxoMn(IV) porphyrin, was relatively stable decaying slowly to Mn(III)(4-TMPyP) with a first-order rate constant of 3.7 × 10−3 s−1. OMn(IV)(4-TMPyP) has been found to oxidize NO catalytically at potentials about 70 mV more negative than that previously reported for OFe(IV)(4-TMPyP) with good selectivity against nitrite. Nitrite was catalytically oxidized at potentials higher than 1.1 V presumably by OMn(V)(4-TMPyP). OMn(IV)(4-TMPyP) was observed as an intermediate species. Nitrate has been confirmed to be a final product of the electrolysis at 1.2 V, while at 0.8 V nitrite left unchanged, demonstrating that OMn(IV)(4-TMPyP) could not oxidize nitrite. A possible schemes of the catalytic oxidation of NO by OMnIV(4-TMPyP) and NO2 by OMn(V)(4-TMPyP) have been proposed.  相似文献   

9.
The cross-linking of linear di-vinyl-terminated poly(dimethylsiloxanes) (PDMS) with tetrakis(dimethylsiloxane) was studied in the presence of different concentrations of the cross-linker (H/V = ratio of Si-H groups of the cross-linker and CC bonds). The consumption of the Si-H and CC bonds was monitored simultaneously by in situ Confocal Raman Microscopy (CRM) and ATR-FTIR spectroscopy. When formulations with H/V ≥ 1.0 are cross-linked at low temperature (25 °C) in air and atmospheric humidity conditions, hydrosilylation and secondary reactions occur simultaneously at early stages of the reaction. For H/V = 1.0 the CC bonds are also consumed by side reactions.Films cross-linked from formulations with different H/V ratios were studied by NMR imaging, swelling/extraction experiments and SEM. Films cross-linked with H/V = 1.0 showed a slower magnetization decay due to the presence of a large percentage of extractable material not connected to the cross-linked network. After extraction, all the films show faster relaxation behavior, explained by the presence of two types of chemical cross-links as well as one type of physical cross-links. These cross-links result from the occurrence of hydrosilylation and secondary reactions and counterbalance each other at different H/V ratios.  相似文献   

10.
I-Der Wu 《Polymer》2007,48(4):989-996
Characterization and interaction behavior between Li+ ion and CO groups of a series polyester electrolyte have been thoroughly examined using Fourier transform infrared (FTIR). The “free/Li+ bonded” CO absorptivity coefficient of the LiClO4/polyester can be determined quantitatively using FTIR spectrum ranging from 1800 to 1650 cm−1 at 80 °C. Results from curve fitting show that the “free/Li+ bonded” CO absorptivity coefficient is 0.144 ± 0.005. The CO group of polymer electrolyte shows strong interaction with Li+ ion and a limit value of 95% “Li+ bonded” CO is approached in the polymer electrolyte system when the Li+ ion equivalent fraction is about 0.28. The molecular structure of polyester electrolyte does not affect significantly the efficiency of interaction between Li+ ion and CO.  相似文献   

11.
The synthesis of 3-arm star polymers from reversible addition-fragmentation chain transfer (RAFT)-prepared precursor homopolymers in combination with thiol-ene click chemistry is described. Homopolymers of n-butyl acrylate and N,N-diethylacrylamide were prepared with 1-cyano-1-methylethyl dithiobenzoate and 2,2′-azobis(2-methylpropionitrile) yielding materials with polydispersity indices (Mw/Mn) ≤ 1.18 and controlled molecular weights as determined by a combination of NMR spectroscopy, size exclusion chromatography (SEC), and matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Subsequent one-pot reaction of homopolymer, hexylamine (HexAM), dimethylphenylphosphine (DMPP), and trimethylolpropane triacrylate (TMPTA) results in cleavage of the thiocarbonylthiol end-group (by HexAM) of the homopolymer yielding a macromolecular thiol that undergoes DMPP-initiated thiol-Michael addition to TMPTA yielding 3-arm star polymers. The presence of DMPP is demonstrated to serve an important second role in effectively suppressing the presence of any polymeric disulfide as determined by SEC. Such phosphine-mediated thiol-ene reactions are shown to be extremely rapid, as verified by a combination of FTIR and NMR spectroscopies, with complete consumption of the CC bonds occurring in a matter of min. MALDI-TOF MS and SEC were used to verify the formation of 3-arm stars. A broadening in the molecular weight distribution (Mw/Mn ∼ 1.35) was observed by SEC that was attributed to the presence of residual homopolymer and possibly 2-arm stars formed from trimethylolpropane diacrylate impurity. Interestingly, the MALDI analysis also indicated the presence of 1- and 2-arm species most likely formed from the fragmentation of the parent 3-arm star during analysis. Finally, a control experiment verified that the consumption of CC bonds does not occur via a radical pathway.  相似文献   

12.
Wei Zhang 《Polymer》2007,48(9):2548-2553
A novel polymer brush consisting of poly(phenylacetylene) (PPA) main chain and poly(dimethylsiloxane) (PDMS) side chains was synthesized by the polymerization of phenylacetylene-terminated PDMS macromonomer (M-PDMS). The macromonomer was prepared by the esterfication of monohydroxy-ended PDMS (PDMS-OH, degree of polymerization (DP) = 42) with p-ethynylbenzoic acid. The polymerization of M-PDMS using [(nbd)RhCl]2/Et3N catalyst led to polymer brush, poly(M-PDMS), with Mn up to 349?000 (DP of main chain 104). Poly(M-PDMS) with narrow molecular weight distribution (Mn = 39?900, Mw/Mn = 1.11) was obtained with a vinyl-Rh catalyst, [Rh{C(Ph)CPh2}(nbd){P(4-FC6H4)3}]/(4-FC6H4)3P. Poly(M-PDMS)s were brown to orange viscous liquids and soluble in organic solvents such as toluene and CHCl3. The UV-vis absorptions of poly(M-PDMS) were observed in the range of 350-525 nm, which are attributable to the PPA main chain.  相似文献   

13.
Novel segmented polyurethanes with hard segments based on a single diisocyanate molecule with no chain extenders were prepared by the stoichiometric reactions of poly(tetramethylene oxide)glycol (Mn=1000 g/mol) (PTMO-1000) and 1,4-phenylene diisocyanate (PPDI), trans-1,4-cyclohexyl diisocyanate (CHDI), bis(4-isocyanatocyclohexyl)methane (HMDI) and bis(4-isocyanatophenyl)methane (MDI). Time dependent microphase separation and morphology development in these polyurethanes were studied at room temperature using transmission FTIR spectroscopy. Solvent cast films on KBr discs were annealed at 100 °C for 15 s and microphase separation due to self organization of urethane hard segments was followed by FTIR spectroscopy, monitoring the change in the relative intensities of free and hydrogen-bonded carbonyl (CO) peaks. Depending on the structure of the diisocyanate used, while the intensity of free CO peaks around 1720-1730 cm−1 decreased, the intensity of H-bonded CO peaks around 1670-1690 cm−1, which were not present in the original samples, increased with time and reached saturation in periods ranging up to 5 days. Structure of the diisocyanate had a dramatic effect on the kinetics of the process and the amount of hard segment phase separation. While PPDI and CHDI based polyurethanes showed self-organization and formation of well ordered hard segments, interestingly no change in the carbonyl region or no phase separation was observed for MDI and HMDI based polyurethanes. Quantitative information regarding the relative amounts of non-hydrogen bonded, loosely hydrogen bonded and strongly hydrogen bonded and ordered urethane hard segments were obtained by the deconvolution of CO region and analysis of the relative absorbances in CO region.  相似文献   

14.
Yun Hu  Jianming Zhang  Isao Noda 《Polymer》2008,49(19):4204-4210
The miscibility, crystallization and subsequent melting behavior in binary biodegradable polymer blends of poly(l-lactic acid) (PLLA) and low molecular weight poly(3-hydroxybutyrate) (PHB) have been investigated by differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR) spectroscopy, and wide-angle X-ray diffraction (WAXD). DSC analysis results indicted that PLLA showed no miscibility with high molecular weight PHB (Mw = 650,000 g mol−1) in the 80/20, 60/40, 40/60, 20/80 composition range of the PHB/PLLA blends. On the other hand, it showed some limited miscibility with low molecular weight PHB (Mw = 5000 g mol−1) when the PHB content was below 25%, as evidenced by small changes in the glass transition temperature of PLLA. The partial miscibility was further supported by changes of cold-crystallization behavior of PLLA in the blends. During the nonisothermal crystallization, it was found that the addition of a small amount of PHB up to 30% made the cold-crystallization of PLLA occur in the lower temperature. Meanwhile, the crystallization of PHB and PLLA was observed in the heating process by monitoring characteristic IR bands of each component for the low molecular weight PHB/PLLA 20/80 and 30/70 blends. The temperature-dependent IR and WAXD results also revealed that for PLLA component crystallization, the disorder (α′) phase of PLLA was produced, and that the α′ phase changed to the order (α) phase just prior to the melting point.  相似文献   

15.
This work describes the synthesis and characterisation of two types of thiophene-containing poly(arylene-ethynylene)-alt-poly(arylene-vinylene)s (PAE-PAV) copolymers, whose repeating units (-Ph-CC-Th-CHCH-Ph-CHCH-)n, 5, and (-Th-CC-Ph-CC-Th-CHCH-Ph-CHCH-)n, 8a-c, consist, respectively, of a 1:2 and a 2:2 ratio of triple bond/double bond moieties. Comparison of their photophysical, electrochemical and photovoltaic properties has been carried out. Although similar electrochemical data (HOMO: −5.43 eV, LUMO: ∼−3.15 eV, ) as well as identical thin film absorption behaviour (λa=500 nm, ) were obtained for both types of materials, significant differences in their thin film photoluminescence behaviour and photovoltaic properties were observed. While polymer 5 shows a fluorescence maximum at λe=568 nm (with a fluorescence quantum yield of Φf=7%), a total fluorescence quenching was observed in 8. Far better photovoltaic performance was obtained from solar cells (set up: ITO/PEDOT:PSS/active layer/LiF/Al; active layer consisting of 5 or 8b as donor and PCBM as acceptor in a 1:3 ratio by weight) designed from 5 than from 8b. Open circuit voltage, VOC, as high as 900 mV and power conversion efficiency, ηAM1.5, around 1.2% were obtained. This can be attributed to the 1:2 triple bond/double bond ratio as well as the grafting of shorter octyloxy and 2-ethylhexyloxy side chains in 5 and to its comparatively higher molecular-weight.  相似文献   

16.
17.
18.
Minghua Li  Thomas P. Beebe 《Carbon》2008,46(3):466-475
A clean and simple wet chemical process using dilute aqueous ozone (O3) solution with or without ultrasound (US) was used to functionalize single-walled carbon nanotubes (SWCNTs). Both O3 and O3/US treatments greatly increased the stability of SWCNTs in water. Results of X-ray photoelectron spectroscopy (XPS) showed that the surface oxygen to carbon atomic ratio increased by more than 600% after 72 h of O3 treatment. Moreover, the effective particle size of SWCNTs was reduced from the initial 4400 to ∼300 and ∼150 nm, after 24 h of O3 and O3/US treatment, respectively. The zeta potential of treated SWCNTs decreased from 3.0 to −35.0 mV (at pH 4) after 2 h of treatment with both O3 and O3/US. Based on the XPS results, the oxidation pathway was proposed: at the onset of the oxidation reaction, the CC double bond was first converted to COH which was then oxidized to CO and OCOH concurrently. Oxidation reactions could be described well with first order expressions. Treatment time controlled the extent of surface oxidation and subsequently the stability and dispersion of SWCNTs in water.  相似文献   

19.
20.
Yaqi Yang  Jing Liu  Xiaojun Wang 《Polymer》2011,52(4):1013-1018
Cross-link behavior of an amorphous poly (para-arylene sulfide sulfone amide) synthesized via low temperature solution polycondensation was observed for the first time, when the polymer was subject to a series of thermal curing at 260 °C in air condition. The formation of cross-link network was demonstrated by the DSC and TGA results that Tg of the polymer enhanced from 259.17 °C to 268.89 °C, and the 1% weight loss temperature increased remarkably from 243.75 °C to 345.87 °C. EPR analysis further suggested that two kinds of free radicals, CO and C, induced by thermal curing were responsible for this cross-link behavior. According to FT-IR spectrum, the origin of these free radicals was confirmed as amide CO group in the polymer backbone. The cross-linking type was attributed to conventional radical cross-link reaction and the cross-link mechanism was discussed in detail subsequently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号