共查询到20条相似文献,搜索用时 0 毫秒
1.
Kyu Hyun Manfred WilhelmChristopher O. Klein Kwang Soo ChoJung Gun Nam Kyung Hyun AhnSeung Jong Lee Randy H. EwoldtGareth H. McKinley 《Progress in Polymer Science》2011,36(12):1697-1753
Dynamic oscillatory shear tests are common in rheology and have been used to investigate a wide range of soft matter and complex fluids including polymer melts and solutions, block copolymers, biological macromolecules, polyelectrolytes, surfactants, suspensions, emulsions and beyond. More specifically, small amplitude oscillatory shear (SAOS) tests have become the canonical method for probing the linear viscoelastic properties of these complex fluids because of the firm theoretical background [1], [2], [3] and [4] and the ease of implementing suitable test protocols. However, in most processing operations the deformations can be large and rapid: it is therefore the nonlinear material properties that control the system response. A full sample characterization thus requires well-defined nonlinear test protocols. Consequently there has been a recent renewal of interest in exploiting large amplitude oscillatory shear (LAOS) tests to investigate and quantify the nonlinear viscoelastic behavior of complex fluids. In terms of the experimental input, both LAOS and SAOS require the user to select appropriate ranges of strain amplitude (γ0) and frequency (ω). However, there is a distinct difference in the analysis of experimental output, i.e. the material response. At sufficiently large strain amplitude, the material response will become nonlinear in LAOS tests and the familiar material functions used to quantify the linear behavior in SAOS tests are no longer sufficient. For example, the definitions of the linear viscoelastic moduli G′(ω) and G″(ω) are based inherently on the assumption that the stress response is purely sinusoidal (linear). However, a nonlinear stress response is not a perfect sinusoid and therefore the viscoelastic moduli are not uniquely defined; other methods are needed for quantifying the nonlinear material response under LAOS deformation. In the present review article, we first summarize the typical nonlinear responses observed with complex fluids under LAOS deformations. We then introduce and critically compare several methods that quantify the nonlinear oscillatory stress response. We illustrate the utility and sensitivity of these protocols by investigating the nonlinear response of various complex fluids over a wide range of frequency and amplitude of deformation, and show that LAOS characterization is a rigorous test for rheological models and advanced quality control. 相似文献
2.
3.
Yoshiaki Takahashi Hirokazu Suzuki Yoshiki Nakagawa Ichiro Noda 《Polymer International》1994,34(3):327-331
Viscoelastic properties of a polystyrene-poly(vinyl methyl ether) blend were measured in oscillatory and steady shear flows near the phase separation temperature. In the one-phase region, the viscoelastic properties are independent of the type of flow and flow geometry, and their shear and frequency dependences are the same as those of homopolymers. When phase separation occurred, a change in viscoelastic properties was observed in all types of flow and flow geometries, and they are different in the different types of flow and/or different flow geometries in the two-phase region. In the shear rate dependence of viscosity of the polymer blend in the two-phase region at quiescence, a plateau region was observed, in which the shear viscosity can be regarded as the zero shear viscosity of the homogenized polymer blend at that temperature. 相似文献
4.
Minoru Nagata Tsuyoshi Kiyotsukuri Susumu Minami Naoto Tsutsumi Wataru Sakai 《Polymer International》1996,39(2):83-89
Poly(ethylene terephthalate) copolymers were prepared by melt polycondensation of dimethyl terephthalate and excess ethylene glycol with 10–40mol% (in feed) of poly(ethylene glycol) (E) and poly(tetramethylene glycol) (B), with molecular weight (MW) of E and B 200–7500 and 1000, respectively. The reduced specific viscosity of copolymers increased with increasing MW and content of polyglycol comonomer. The temperature of melting (Tm), cold crystallization and glass transition (Tg) decreased with the copolymerization. Tm depression of copolymers suggested that the E series copolymers are the block type at higher content of the comonomer. Tg was decreased below room temperature by the copolymerization, which affected the crystallinity and the density of copolymer films. Water absorption increased with increasing content of comonomer, and the increase was much higher for E1000 series films than B1000 series films. The biodegradability was estimated by weight loss of copolymer films in buffer solution with and without a lipase at 37°C. The weight loss was enhanced a little by the presence of a lipase, and increased abruptly at higher comonomer content, which was correlated to the water absorption and the concentration of ester linkages between PET and PEG segments. The weight loss of B series films was much lower than that of E series films. The abrupt increase of the weight loss by alkaline hydrolysis is almost consistent with that by biodegradation. 相似文献
5.
Hee Jeung Oh Benny D. Freeman James E. McGrath Christopher J. Ellison Sue Mecham Kwan-Soo Lee Donald R. Paul 《Polymer》2014
Disulfonated poly(arylene ether sulfone) (BPS) random copolymers, prepared from a sulfonated monomer, have been considered for use as membrane materials for various applications in water purification and power generation. These membranes can be melt-processed to avoid the use of hazardous solvent-based processes with the aid of a plasticizer, a low molecular weight poly(ethylene glycol) (PEG). PEG was used to modify the glass transition temperature and melt rheology of BPS to enable coextrusion with polypropylene (PP). Our previous paper discussed the miscibility of BPS with PEG and the influence of PEG on the glass transition of BPS. In this study, the rheological properties of disulfonated poly(arylene ether sulfone)s plasticized with poly(ethylene glycol) (PEG) are investigated to identify coextrusion processing conditions with candidate PPs. The effects of various factors including PEG molecular weight, PEG concentration, temperature and BPS molecular weight on blend viscosity were studied. The rheological data effectively lie on the same master curve developed by Bueche and Harding for non-associating polymers such as poly(methyl methacrylate) (PMMA) and polystyrene (PS). Although sulfonated polysulfone contains ionic groups, the form of its viscosity versus shear rate (or frequency) behavior appears to be dominated by the relaxation of polymer entanglements. 相似文献
6.
Abdel-Azim A. Abdel-Azim Aiman M. Atta Medhat S. Farahat Wagdy Y. Boutros 《应用聚合物科学杂志》1998,69(8):1471-1482
The intrinsic viscosity of polystyrene–poly(ethylene oxide) (PS–PEO) and PS–poly(ethylene glycol) (PEG) blends have been measured in benzene as a function of blend composition for various molecular weights of PEO and PEG at 303.15 K. The compatibility of polymer pairs in solution were determined on the basis of the interaction parameter term, Δb, and the difference between the experimental and theoretical weight-average intrinsic viscosities of the two polymers, Δ[η]. The theoretical weight-average intrinsic viscosities were calculated by interpolation of the individual intrinsic viscosities of the blend components. The compatibility data based on [η] determined by a single specific viscosity measurement, as a quick method for the determination of the intrinsic viscosity, were compared with that obtained from [η] determined via the Huggins equation. The effect of molecular weights of the blend components and the polymer structure on the extent of compatibility was studied. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 1471–1482, 1998 相似文献
7.
Mihir Sheth R. Ananda Kumar Vipul Dav Richard A. Gross Stephen P. McCarthy 《应用聚合物科学杂志》1997,66(8):1495-1505
Poly(lactic acid) (PLA) and poly(ethylene glycol) (PEG) were melt-blended and extruded into films in the PLA/PEG ratios of 100/0, 90/10, 70/30, 50/50, and 30/70. It was concluded from the differential scanning calorimetry and dynamic mechanical analysis results that PLA/PEG blends range from miscible to partially miscible, depending on the concentration. Below 50% PEG content the PEG plasticized the PLA, yielding higher elongations and lower modulus values. Above 50% PEG content the blend morphology was driven by the increasing crystallinity of PEG, resulting in an increase in modulus and a corresponding decrease in elongation at break. The tensile strength was found to decrease in a linear fashion with increasing PEG content. Results obtained from enzymatic degradation show that the weight loss for all of the blends was significantly greater than that for the pure PLA. When the PEG content was 30% or lower, weight loss was found to be primarily due to enzymatic degradation of the PLA. Above 30% PEG content, the weight loss was found to be mainly due to the dissolution of PEG. During hydrolytic degradation, for PLA/PEG blends up to 30% PEG, weight loss occurs as a combination of degradation of PLA and dissolution of PEG. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 1495–1505, 1997 相似文献
8.
Poly(ethylene glycol) (PEG) has been widely used in studies of polymer–clay nanocomposites because it readily intercalates in smectite clays. Nanocomposites were formed from PEG with molecular weights (Mw) ranging from 300 to 20,000, as evidenced by expansion of the basal planar spacing of the clay (d001) in X‐ray diffraction. However PEG with high molecular weight (≥ 10,000) readily underwent degradation during preparation of composites when heated at low temperature (60°C) due to oxidative attack. Molecular weight distribution determined by gel permeation chromatography showed that this degradation always happened with or without the presence of clay and it became more serious when the molecular weight was higher. The reduction in pH of aqueous PEG solutions after degradation increased with molecular weight. Since d001 was independent of molecular weight over a wide range, such degradation cannot be detected by this method. Precautions against oxidative attack are therefore recommended to avoid decomposition when preparing PEG–clay nanocomposites. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 548–552, 2004 相似文献
9.
10.
A configurational biomimetic imprinting technique was used to prepare recognition sites for glucose in copolymers of 2‐hydroxyethyl methacrylate (HEMA) and methacrylic acid (MAA) prepared with crosslinking agents containing poly(ethylene glycol) (PEG). We report on the structure, diffusive, and recognition characteristics of these gels, the effect of the type and ratio of crosslinking agent, as well as the template/comonomer ratios on glucose binding ability. The highest equilibrium glucose binding was found as 2.67 mg/g dry polymer when PEG monomethacrylate (PEGMMA) was used in combination with tetra ethylene glycol dimethacrylate (TEGDMA) (50%) as a crosslinking agent. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 103: 432–441, 2007 相似文献
11.
The molecular relaxation characteristics of rubbery amorphous crosslinked networks based on poly(ethylene glycol) diacrylate [PEGDA] and poly(propylene glycol) diacrylate [PPGDA] have been investigated using broadband dielectric spectroscopy. Dielectric spectra measured across the sub-glass transition region indicate the emergence of an intermediate “fast” relaxation in the highly crosslinked networks that appears to correspond to a subset of segmental motions that are more local and less cooperative as compared to those associated with the glass transition. This process, which is similar to a distinct sub-Tg relaxation detected in poly(ethylene oxide) [PEO], may be a general feature in systems with a sufficient level of chemical or physical constraint, as it is observed in the crosslinked networks, crystalline PEO, and PEO-based nanocomposites. 相似文献
12.
Poly(ethylene glycol) (PEG) and end‐capped poly(ethylene glycol) (poly(ethylene glycol) dimethyl ether (PEGDME)) of number average molecular weight 1000 g mol?1 was melt blended with poly(ethylene terephthalate) (PET) oligomer. NMR, DSC and WAXS techniques characterized the structure and morphology of the blends. Both these samples show reduction in Tg and similar crystallization behavior. Solid‐state polymerization (SSP) was performed on these blend samples using Sb2O3 as catalyst under reduced pressure at temperatures below the melting point of the samples. Inherent viscosity data indicate that for the blend sample with PEG there is enhancement of SSP rate, while for the sample with PEGDME the SSP rate is suppressed. NMR data showed that PEG is incorporated into the PET chain, while PEGDME does not react with PET. Copyright © 2005 Society of Chemical Industry 相似文献
13.
The melting and crystallization behavior and phase morphology of poly(3-hydroxybutyrate) (PHB) and poly(DL-lactide)-co-poly(ethylene glycol) (PELA) blends were studied by DSC, SEM, and polarizing optical microscopy. The melting temperatures of PHB in the blends showed a slight shift, and the melting enthalpy of the blends decreased linearly with the increase of PELA content. The glass transition temperatures of PHB/PELA (60/40), (40/60), and (20/80) blends were found at about 30°C, close to that of the pure PELA component, during DSC heating runs for the original samples and samples after cooling from the melt at a rate of 20°C/min. After a DSC cooling run at a rate of 100°C/min, the blends showed glass transitions in the range of 10–30°C. Uniform distribution of two phases in the blends was observed by SEM. The crystallization of PHB in the blends from both the melt and the glassy state was affected by the PELA component. When crystallized from the melt during the DSC nonisothermal crystallization run at a rate of 20°C/min, the temperatures of crystallization decreased with the increase of PELA content. Compared with pure PHB, the cold crystallization peaks of PHB in the blends shifted to higher temperatures. Well-defined spherulites of PHB were found in both pure PHB and the blends with PHB content of 80 or 60%. The growth of spherulites of PHB in the blends was affected significantly by 60% PELA content. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65: 1849–1856, 1997 相似文献
14.
The interaction between poly(acrylamide) (PAM) and poly(ethylene glycol) (PEG) in their solid mixture was studied by Fourier transform infrared spectroscopy (FTIR); and their interaction in aqueous solution was investigated by nuclear magnetic resonance spectroscopy (NMR). For the solid PAM/PEG mixtures, an induced shift of the >C?O and >N? H in amide group was found by FTIR. These results could demonstrate the formation of intermolecular hydrogen bonding between the amide group of PAM and the ether group of PEG. In the aqueous PAM/PEG solution system, the PAM and PEG associating with each other in water, i.e., the amide group of PAM interacting with the ether group of PEG through hydrogen bonding was also found by 1H NMR. Furthermore, the effects of different molecular weight of PAM on the strength of hydrogen bonding between PAM and PEG in water were investigated systemically. It was found that the hydrogen bonding interaction between PAM and PEG in water did not increase with the enlargement of the PAM molecular weight as expected. This finding together with the viscosity reduction of aqueous PAM/PEG solution with the PAM molecular weight increasing strongly indicated that PAM molecular chain, especially having high molecular weights preferred to form spherical clews in aqueous PEG solution. Therefore, fewer amide groups in PAM could interact with the ether groups in PEG. Based on these results, a mechanism sketch of the interaction between PAM and PEG in relatively concentrated aqueous solution was proposed. The fact that the phase separation of aqueous PAM/PEG solution occurs while raising the temperature indicates that this kind of hydrogen bonding between PAM and PEG in water is weak and could be broken by controlling the temperature. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
15.
A polyblend of poly(ortho esters)–poly(ethylene glycol) (POE–PEG) was prepared. The release behavior of the acetanilide‐loaded film of the POE–PEG polyblend was studied. Blending POE with water‐soluble PEG can promote the release of drug in pH 7.4 PBS buffer at 37°C, while POE has plasticizing effect on PEG. Infrared and X‐ray diffraction studies reveal that there is some interaction between POE and acetanilide. The SEM micrographs disclose that the porosity of the drug‐loaded film enhances with an increase immersing time. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 303–309, 1999 相似文献
16.
17.
Ke‐Ke Yang Li Zheng Yu‐Zhong Wang Jian‐Bing Zeng Xiu‐Li Wang Si‐Chong Chen Qiang Zeng Bin Li 《应用聚合物科学杂志》2006,102(2):1092-1097
Poly(p‐dioxanone)–poly(ethylene glycol)–poly(p‐dioxanone) ABA triblock copolymers (PEDO) were synthesized by ring‐opening polymerization from p‐dioxanone using poly(ethylene glycol) (PEG) with different molecular weights as macroinitiators in N2 atmosphere. The copolymer was characterized by 1H NMR spectroscope. The thermal behavior, crystallization, and thermal stability of these copolymers were investigated by differential scanning calorimetry and thermogravimetric measurements. The water absorption of these copolymers was also measured. The results indicated that the content and length of PEG chain have a greater effect on the properties of copolymers. This kind of biodegradable copolymer will find a potential application in biomedical materials. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:1092–1097, 2006 相似文献
18.
Crystallization and phase separation in blends of high stereoregular poly(lactide) with poly(ethylene glycol) 总被引:2,自引:0,他引:2
The effect of cooling rate on crystallization and subsequent aging of high stereoregular poly(lactide) (PLA) blended with poly(ethylene glycol) (PEG) was studied by thermal analysis and by direct observation of the solid state structure with atomic force microscopy (AFM). Blending with PEG accelerated crystallization of PLA. When a PLA/PEG 70/30 (wt/wt) blend was slowly cooled from the melt, PLA crystallized first as large spherulites followed by crystallization of PEG. The extent of PLA crystallization depended on the cooling rate, however, for a given blend composition the PEG crystallinity was proportional to PLA crystallinity. The partially crystallized blend obtained with a cooling rate of 30 °C min−1 consisted of large spherulites dispersed in a homogeneous matrix. The blend was not stable at ambient temperature. With time, epitaxial crystallization of PEG on the edges of the spherulites depleted the surrounding region of PEG, which created a vitrified region surrounding the spherulites. Further from the spherulites, the homogeneous amorphous phase underwent phase separation with formation of a more rigid PLA-rich phase and a less-rigid PEG-rich phase. Decreasing the amount of PEG in the blend decreased the crystallization rate of PLA and increased the nucleation density. The amount of PLA crystallinity did not depend on blend composition, however, PEG crystallinity decreased to the extent that PEG did not crystallize in a PLA/PEG 90/10 (wt/wt) blend. 相似文献
19.
The poly(ethylene glycol) (PEG)‐grafted styrene (St) copolymer, which was formed as a nanosphere, was used as an agent to modify the surface of poly(ethylene terephthalate) (PET) film. The graft copolymer was dissolved into chloroform and coated onto the PET film by dip–coating method. The coated amount depends on the content ratios of PEG and St, the solution concentration, and the coating cycles. The graft copolymers having a low molecular weight of PEG‐ or St‐rich content was fairly stable on washing in sodium dodecyl sulfate (SDS) aqueous solution. It was confirmed that the PET surface easily altered its surface property by the coating of the graft copolymers. The contact angles of the films coated with the graft copolymers were very high (ca. 105–120°). The coated film has good antistatic electric property, which agreed with PEG content. The best condition of coating is a one‐cycle coating of 1% (w/v) graft copolymer solution. The coated surface had water‐repellency and antistatic electric property at the same time. The graft copolymer consisted of a PEG macromonomer; St was successfully coated onto PET surfaces, and the desirable properties of both of PEG macromonomer and PSt were exhibited as a novel function of the coated PE film. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1524–1530, 1999 相似文献
20.
The effect of antioxidants contained in poly(ethylene glycol) (PEG) on cell fusion was studied using L929 cells in the monolayer state. Hydroquinone monomethyl ether (HQME), 2-mercaptobenzimidazole (MB), butyl hydroxyanisole (BHA) and 2,6-di-(t-butyl)-4-methylphenol (BHT) were chosen from the antioxidants that have currently been used to protect commercially available PEG from oxidation. Cell culture was conducted in 40% w/w aqueous solution of PEG with a molecular weight of 3000 in the presence of different concentrations of antioxidants. BHA clearly enhanced membrane fusion of L929 cells with increasing concentration in PEG solution, whereas HQME, MB and BHT had no significant effect on cell fusion. The enhancement of cell fusion by BHA might be ascribed to balanced hydrophobicity and high water solubility in comparison with the other three antioxidants. 相似文献