首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several conducting polymers, including polyaniline, polypyrrole, polythiophene, polyvinylpyrrolidone, poly(3,4-ethylenedioxythiophene), poly(m-phenylenediamine), polynaphthylamine, poly(p-phenylene sulfide), and their carbon nanotube reinforced nanocomposites are discussed in this review. The physical, electrical, structural and thermal properties of polymers along with synthesis methods are discussed. A concise note on carbon nanotubes regarding their purification, functionalization, properties and production are reported. Moreover, the article focuses upon synthesis methods, properties and applications of conducting polymer/carbon nanotube nanocomposites are focused. Nanotube dispersion, loading concentration and alignment within conducting polymer/carbon nanotube nanocomposite affect their performance and morphology. The conducting polymer/carbon nanotube nanocomposites are substantially used in sensors, energy storage devices, supercapacitors, solar cells, EMI materials, diodes, and coatings.  相似文献   

2.
A cavity microelectrode (CME) was used to perform an electrochemical synthesis of hybrid materials made of carbon nanotubes (CNTs) and conducting polymers. The confinement of the CME is used to produce a uniform nanometric coating of an electronically conducting polymer such as poly(N-methylpyrrole) (Pmpy) on multiwalled carbon nanotubes. The CME also allows easy characterization of the presence of the polymer layer on the surface of the CNTs by cyclic voltammetry. Transmission electron microscopy allowed us to measure the thickness and confirm the homogeneity of the Pmpy coating around the CNTs. Finally Raman spectroscopy brings additional information on the electrogenerated hybrid materials.  相似文献   

3.
BACKGROUND: Recently, much work has focused on the efficient dispersion of carbon nanotubes (CNTs) throughout a polymer matrix for mechanical and/or electrical matrices. However, CNTs used as enhancement inclusions in a high‐performance polymer matrix, especially in poly(aryl ether ketone) (PAEK), have rarely been reported. Therefore, multi‐walled carbon nanotube (MWNT)‐modified PAEK nanocomposites were synthesized by in situ polymerization of monomers of interest in the presence of pre‐treated MWNTs. RESULTS: This process enabled a uniform dispersion of MWNT bundles in the polymer matrix. The resultant MWNT/PAEK nanocomposite films were optically transparent with significant mechanical enhancement at a very low MWNT loading (0.5 wt%). CONCLUSION: These MWNT/polymer nanocomposites are potentially useful in a variety of aerospace and terrestrial applications, due to the combination of excellent properties of MWNTs with PAEK. Copyright © 2009 Society of Chemical Industry  相似文献   

4.
Graphene nanoribbons (GNRs), obtained by different methods from carbon nanotubes (CNTs) or graphene, are attractive materials for polymer nanocomposites due to their considerably high interfacial area, as compared to CNTs. Consequently, a better adhesion with a polymer matrix is anticipated for GNRs. Also, surface modification of these nanofillers, such as nitrogen doping, is known to be an efficient method to improve their properties. In this work, fluoroelastomers (FKM) were used as the polymer matrix to host GNRs. Undoped and nitrogen doped GNRs were synthesized from the parent multiwall carbon nanotubes (MWCNTs). MWCNT/FKM and GNR/FKM nanocomposites were prepared via a solution mixing/melt mixing protocol.  相似文献   

5.
Novel single‐source‐precursors (SSPs), namely carbon nanotube modified poly (methylvinyl) silazane (CNTs‐HTT 1800), were synthesized via amidation reaction of poly (methylvinyl) silazane (HTT 1800) with carboxylic acid functionalized carbon nanotubes (CNTs‐COOH) at the assistance of ZnCl2 catalyst, which was confirmed by means of Fourier transform infrared spectra (FT IR) and transmission electron microscopy (TEM). Besides, the TEM results unambiguously show the homogeneous distribution of the CNTs in the matrix of SSPs while serious aggregation of the CNTs in the matrix of physically‐blended‐precursor. Crack‐free monolithic silicon carbonitride modified by carbon nanotubes ceramic nanocomposites (CNTs‐SiCN) were prepared through pyrolysis of the obtained SSP green bodies at 1000°C. Due to the strong influence of polymer structure on the microstructure of final ceramics, the SSP‐derived CNTs‐SiCN nanocomposites clearly show the homogeneous distribution of the CNTs in the SiCN matrix while the physically‐blended‐precursor derived CNTs‐SiCN nanocomposites exhibit serious aggregation and entangling of the CNTs in the SiCN matrix. With the same CNT content in the feed, the SSP‐derived CNTs‐SiCN nanocomposites possess significant improvements of electromagnetic (EM) absorbing properties compared to those from physically‐blended‐precursors, due to the quality of the dispersion of CNTs in the ceramic matrices.  相似文献   

6.
This paper reviews the mechanism of the conducting process of carbon nanotubes (CNTs)-reinforced polymer nanocomposites. Comparison of the two different mechanisms, the formation of the conducting network and the hopping of the electrons, are discussed. The paper also describes the critical factors that determine percolation thresholds or the conductivity of the nanocomposites. By summarizing the predecessors' research, some measures are put forward to improve the structure of the nanocomposites to get the samples that have the most extraordinary electrical conductivity with the lowest CNTs concentrations.  相似文献   

7.
Carbon nanotubes (CNTs) have attracted tremendous attention in recent years because of their superb optical, electronic and mechanical properties. In this article, we aim to discuss CNT-induced polymer crystallization with the focus on the newly discovered nanohybrid shish-kebab (NHSK) structure, wherein the CNT serves as the shish and polymer crystals are the kebabs. Polyethylene (PE) and Nylon 6,6 were successfully decorated on single-walled carbon nanotubes (SWNTs), multi-walled carbon nanotubes (MWNTs), and vapor grown carbon nanofibers (CNFs). The formation mechanism was attributed to “size-dependent soft epitaxy”. Polymer CNT nanocomposites (PCNs) containing PE, Nylon 6,6 were prepared using a solution blending technique. Both pristine CNTs and NHSKs were used as the precursors for the PCN preparation. The impact of CNTs on the polymer crystallization behavior will be discussed. Furthermore, four different polymers were decorated on CNTs using the physical vapor deposition method, forming a two-dimensional NHSK structure. These NHSKs represent a new type of nanoscale architecture. A variety of possible applications will be discussed.  相似文献   

8.
Luca Valentini 《Polymer》2005,46(17):6715-6718
The adsorption of several types of conducting polymers on carbon nanotubes is investigated by electrical transport measurements. We report the optoelectronic properties occurring in single-walled carbon nanotubes (SWNTs) conjugated polymer, poly(3-octylthiophene), composites. Al/polymer-nanotube composite/indium-tin oxide diodes show photovoltaic behavior proposing that the main reason for this increase is the photoinduced electron transfer at the polymer/nanotube interface. Interesting results were obtained in the case of poly(o-anisidine) (POAS)-multi-walled nanotubes (MWNTs) composites where the increment of monolayers results in a significant improvement of the specific conductivity. POAS-coated MWNTs thin films demonstrated their potentiality as a new class of materials for inorganic vapors detection for environmental applications.  相似文献   

9.
Xuetong Zhang  Jin Zhang  Zhongfan Liu 《Carbon》2005,43(10):2186-2191
We have demonstrated a simple and general strategy, namely in situ electropolymerization by using an ionic surfactant as the electrolyte, for alignment of disordered CNTs within conducting polymer/carbon nanotube composite films. The single- or multi-walled CNTs were first dispersed in an aqueous solution containing SDS (sodium dodecyl sulfate), then electroactive monomer pyrrole or N-methylpyrrole was added into the above mixture, finally electrochemical reaction was proceeded at the surface of the Au electrode and correspondingly a series of conducting polymer/carbon nanotube composite films with the orientation of carbon nanotubes were obtained.  相似文献   

10.
Composite films of carbon nanotubes (CNTs) with polyaniline (PANI), polypyrrole (PPY) or poly[3,4-ethylenedioxythiophene] (PEDOT) were prepared via electrochemical co-deposition from solutions containing acid treated CNTs and the corresponding monomer. In the cases of PPY and PEDOT, CNTs served as the charge carriers during electro-deposition, and also acted as both the backbone of a three-dimensional micro- and nano-porous structure and the effective charge-balancing dopant within the polymer. All the composites showed improved mechanical integrity, higher electronic and ionic conductivity (even when the polymer was reduced), and exhibited larger electrode specific capacitance than the polymer alone. Under similar conditions, the capacitance was enhanced significantly in as-prepared PPY-CNT and PEDOT-CNT films. However, the fresh PANI-CNT film was electrochemically similar to PANI, but PPY-CNT and PEDOT-CNT differed noticeably from the respective polymers alone. In continuous potential cycling tests, unlike the pure polymer and other composite films, PANI-CNT performed much better in retaining the capacitance of the as-prepared film, and the possible cause is analysed.  相似文献   

11.
Intrinsically conducting polymers have been studied extensively due to their intriguing electronic and redox properties and numerous potential applications in many fields since their discovery in 1970s. To improve and extend their functions, the fabrication of multi-functionalized conducting polymer nanocomposites has attracted a great deal of attention because of the emergence of nanotechnology. This article presents an overview of the synthesis of one-dimensional (1D) conducting polymer nanocomposites and their properties and applications. Nanocomposites consist of conducting polymers and one or more components, which can be carbon nanotubes, metals, oxide nanomaterials, chalcogenides, insulating or conducting polymers, biological materials, metal phthalocyanines and porphyrins, etc. The properties of 1D conducting polymer nanocomposites will be widely discussed. Special attention is paid to the difference in the properties between 1D conducting polymer nanocomposites and bulk conducting polymers. Applications of 1D conducting polymer nanocomposites described include electronic nanodevices, chemical and biological sensors, catalysis and electrocatalysis, energy, microwave absorption and electromagnetic interference (EMI) shielding, electrorheological (ER) fluids, and biomedicine. The advantages of 1D conducting polymer nanocomposites over the parent conducting polymers are highlighted. Combined with the intrinsic properties and synergistic effect of each component, it is anticipated that 1D conducting polymer nanocomposites will play an important role in various fields of nanotechnology.  相似文献   

12.
Incorporation of carbon nanotubes (CNTs) in conducting polymer can lead to new composites with enhanced electrical and mechanical properties. However, the development of such composites has been hampered by the inability to disperse CNTs in polymer matrix due to the lack of chemical compatibility between polymers and CNTs. Covalent sidewall functionalization of carbon nanotube provides a feasible route to incorporate carbon nanotube in polymer. In this work, 4‐aminobenzene groups were grafted onto the surface of multi‐walled carbon nanotube (MWNT) via C? C covalent bond. Polyaniline (PANI)/MWNT composites were fabricated by electrochemical polymerization of aniline containing well‐dissolved functionalized MWNTs. The obtained composites can be used as catalyst supports for electrooxidation of formic acid. Cyclic voltammogram results show that platinum particles deposited in PANI/MWNT composite films exhibit higher electrocatalytic activity and better long‐term stability towards formic acid oxidation than that deposited in pure PANI films. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

13.
New application of conducting polymers as stable nanocomposites for nitrate ion exchange materials in water and wastewater treatment and for environmental protection is introduced in this work. The nanocomposites of multi-walled carbon nanotubes (MWCNTs) with different polymers such as: polyaniline (PANI), polypyrrole (PPY), poly(1,8-diaminonaphthalene) [P(1,8-DAN)] and poly(2-vinylpyridine) (P2VP) were synthesized with different dopants as effective and reusable nanocomposites for nitrate removal from drinking water. Nitrate anions at toxic concentrations were removed from water using ion exchange mechanism without any toxic byproducts. The obtained results demonstrate that effective ion exchange occurs between NO3 ? and Cl?. There are some protonated heteroatoms in polymer chains that are bonded with anions of dopants and their counter ions in nanocomposites. These dopant anions on the =NH+– groups of polymers can be exchanged with NO3 ? in water. Adsorption of NO3 ? on polymer/MWCNTs nanocomposites showed dependency to some parameters. Different experimental parameters such as pH and temperature of the sample, polymers dopant, and the ratio of polymer to MWCNTs in nanocomposites affect the amount of nitrate removal. The highest removal efficiency was achieved at 1.20 g L?1 of PANI/MWCNTs (3:1) nanocomposite, pH = 6.5 and ambient temperature. After five successive cycles of nitrate removal, this parameter was still up to 70 % compared to the first run (up to 80 %).  相似文献   

14.
Yang SB  Kong BS  Jung DH  Baek YK  Han CS  Oh SK  Jung HT 《Nanoscale》2011,3(4):1361-1373
The use of carbon nanotubes (CNTs) as transparent conducting films is one of the most promising aspects of CNT-based applications due to their high electrical conductivity, transparency, and flexibility. However, despite many efforts in this field, the conductivity of carbon nanotube network films at high transmittance is still not sufficient to replace the present electrodes, indium tin oxide (ITO), due to the contact resistances and semi-conducting nanotubes of the nanotube network films. Many studies have attempted to overcome such problems by the chemical doping and hybridization of conducting guest components by various methods, including acid treatment, deposition of metal nanoparticles, and the creation of a composite of conducting polymers. This review focuses on recent advances in surface-modified carbon nanotube networks for transparent conducting film applications. Fabrication methods will be described, and the stability of carbon nanotube network films prepared by various methods will be demonstrated.  相似文献   

15.
The ability of a Keggin-type polyoxometallate, phosphododecamolybdate (PMo12O403−), to form stable anionic monolayers on carbon nanoparticles and multi-wall nanotubes is explored here to produce stable colloidal solutions of polyoxometallate covered carbon nanostructures and to disperse them within conducting polymer, poly(3,4-ethylenedioxythiophene), i.e. PEDOT, or polyaniline multilayer films. By repeated alternate treatments in the colloidal suspension of PMo12O403−-protected carbon nanoparticles or nanotubes, and in the acid solution of a monomer (3,4-ethylenedioxythiophene or aniline), the amount of the material can be increased systematically (layer-by-layer) to form stable three-dimensional organized arrangements (networks) of interconnected organic and inorganic layers on electrode (e.g. glassy carbon) surfaces. In hybrid films, the negatively charged polyoxometallate-covered carbon nanostructures interact electrostatically with positively charged conducting polymer ultra-thin layers. Consequently, the attractive electrochemical charging properties of conducting polymers, reversible redox behavior of polyoxometallate, as well as the mechanical and electrical properties of carbon nanoparticles or nanotubes can be combined. The films are characterized by fast dynamics of charge transport, and they are of potential importance to electrocatalysis and charge storage in redox capacitors.  相似文献   

16.
Mehmet Y?ld?r?m 《Polymer》2009,50(24):5653-3040
Soluble kinds of coordination polymers containing Cr(III) ion in the backbone were synthesized. Structures of the polymers were characterized by FT-IR, UV-vis, 1H and 13C NMR, and size exclusion chromatography (SEC). Thermal degradation data were obtained by TG-DTA and DSC techniques. Cyclic voltammetry (CV) measurements were carried out and the HOMO-LUMO energy levels and electrochemical band gaps were calculated. Additionally, the optical band gaps (Eg) were determined by using UV-vis spectra of the materials. Electrical conductivity measurements of doped (with iodine) and undoped polymers related to temperature were carried out by four-point probe technique using a Keithley 2400 electrometer. Measurements were made by using the polymeric films deposited on ITO glass plate by dip-coating method. Also, absorption spectra of doped polymeric films were recorded by a single beam spectrophotometer showing that doping procedure causes shifting in absorption spectra. Their abilities of processing in gas sensors were also discussed. According to obtained results the synthesized chelate polymers are semi-conductors having polyconjugated structures. Also, P-2 is the most electro-conductive polymer among the synthesized, while P-1 is the most thermally stable one.  相似文献   

17.
Today, we stand at the threshold of exploring carbon nanotube (CNT) based conducting polymer nanocomposites as a new paradigm for the next generation multifunctional materials. However, irrespective of the reported methods of composite preparation, the use of CNTs in most polymer matrices to date has been limited by challenges in processing and insufficient dispersability of CNTs without chemical functionalization. Thus, development of an industrially feasible process for preparation of polymer/CNT conducting nanocomposites at very low CNT loading is essential prior to the commercialization of polymer/CNT nanocomposites. Here, we demonstrate a process technology that involves in situ bulk polymerization of methyl methacrylate monomer in the presence of multi‐wall carbon nanotubes (MWCNTs) and commercial poly(methyl methacrylate) (PMMA) beads, for the preparation of PMMA/MWCNT conducting nanocomposites with significantly lower (0.12 wt% MWCNT) percolation threshold than ever reported with unmodified commercial CNTs of similar qualities. Thus, a conductivity of 4.71 × 10?5 and 2.04 × 10?3 S cm?1 was achieved in the PMMA/MWCNT nanocomposites through a homogeneous dispersion of 0.2 and 0.4 wt% CNT, respectively, selectively in the in situ polymerized PMMA region by using 70 wt% PMMA beads during the polymerization. At a constant CNT loading, the conductivity of the composites was increased with increasing weight percentage of PMMA beads, indicating the formation of a more continuous network structure of the CNTs in the PMMA matrix. Scanning and transmission electron microscopy studies revealed the dispersion of MWCNTs selectively in the in situ polymerized PMMA phase of the nanocomposites. Copyright © 2012 Society of Chemical Industry  相似文献   

18.
Thermoplastic nanocomposites, based on high‐density polyethylene, polyamide 6, polyamide 66, poly(butylene terephthalate), or polycarbonate and containing multiwalled carbon nanotubes (CNTs), were compounded with either neat CNTs or commercial CNT master batches and injection‐molded for the evaluation of their electrical, mechanical, and thermal properties. The nanocomposites reached a percolation threshold within CNT concentrations of 2–5 wt %; however, the mechanical properties of the host polymers were affected. For some nanocomposites, better properties were achieved with neat CNTs, whereas for others, master batches were better. Then, polycarbonate and poly(butylene terephthalate), both with a CNT concentration of 3 wt %, were injection‐molded with a screening design of experiments (DOE) to evaluate the effects of the processing parameters on the properties of the nanocomposites. Although only a 10‐run screening DOE was performed, such effects were clearly observed. The volume resistivity was significantly dependent on the working temperature and varied up to 4 orders of magnitude. Other properties were also dependent on the processing parameters, albeit in a less pronounced fashion. Transmission electron microscopy indicated that conductive samples formed a percolation network, whereas nonconductive samples did not. In conclusion, injection‐molding parameters have a significant impact on the properties of polymer/CNT nanocomposites, and these parameters should be optimized to yield the best results. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
Carbon nanotubes (CNTs)-reinforced polysulfone (PSU) nanocomposites were prepared through solution mixing of PSU and different weight percent of multi-walled carbon nanotubes (MWCNTs). Thermal properties of nanocomposites were characterized using thermo-gravimetric analysis (TGA) and differential scanning calorimetry (DSC). TGA studies revealed an increase in thermal stability of the PSU/MWCNTs nanocomposites, which is due to the hindrance of the nanodispered carbon nanotubes to the thermal transfer in nanocomposites and also due to higher thermal stability of CNTs. Morphological properties of nanocomposites were characterized by high resolution transmission electron microscopy (HRTEM) and field emission scanning electron microscope (FESEM). The influence of CNTs loading on electrical properties of PSU/MWCNTs nanocomposites was studied by the measurement of AC and DC resistivity. Dielectric study of nanocomposites was carried out at different frequencies (10 Hz–1 MHz) by using LCR meter. An increase in dielectric constant and dielectric loss was observed with increase in CNTs content, which is due to the interfacial polarization between conducting CNTs and PSU.  相似文献   

20.
The high-temperature (Tg > 650°) wholly aromatic polybenzoxazoles (PBO) polymer chains in thin films underwent elastic energy release via local deformation of crazing when stretched beyond a critical strain around 0.5%. The strain localization in the ultra-rigid polymer was quickly superseded by craze fibril breakdown, triggering catastrophic fracture at low extensions below ~3%. Although the drawing stress of craze fibrillation, determined to be ~3 GPa, was insufficient to separate chains in PBO crystallites, it forced the chains in the amorphous regions to flow into large molecular deformations (~300% strain) at room temperature. The poor craze fibril stability of the rigid-rod chains was enhanced dramatically when surface-functionalized single-walled carbon nanotubes (SWCNTs) were dispersed into the polymer. No toughening effects were observed, however, for multi-walled carbon nanotubes (MWCNTs) although the elastic enhancement leading to increase of strain delocalization was still operative. The toughening selectivity was attributed to the PBO/CNT load transfer coupling during nanoplastic flows in which only the CNTs of compatible bending moments permitting fibril drawing were allowed to participate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号