首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G.M. Geise 《Polymer》2010,51(24):5815-5822
Water and salt transport properties were determined in a family of sulfonated pentablock copolymers to characterize their potential as chlorine-tolerant desalination membrane materials. The degree of sulfonation, block molecular weight, and casting conditions can be independently varied to tune the transport properties of these materials. Data for water uptake, water permeability, salt permeability, and apparent surface charge are presented. Apparent diffusion coefficients of water in these materials were calculated using the solution-diffusion theory. Generally speaking, water sorption, water diffusivity, water permeability, and salt permeability increase with increasing degree of sulfonation. As ion exchange capacity increases from 0.4 to 2.0 meq/g (dry polymer), water uptake values vary between 21% and 118%, and water permeability values, in units of cm2 s−1, vary over 4 orders of magnitude. Salt permeability depends on both the upstream sodium chloride concentration, between 0.01 and 1.0 mol L−1, and the degree of sulfonation. Both water permeability and salt permeability are sensitive to the conditions used when casting the polymer films. Apparent surface charge, as characterized by zeta potential, has been shown to be related to the fouling tendency of several membrane materials. In these materials, zeta potential is most negative in samples with low levels of sulfonation and is near neutral in samples with the highest level of sulfonation.  相似文献   

2.
Disulfonated poly(arylene ether sulfone)s are high glass transition temperature polymers, and their water and salt transport properties depend sensitively on thermal processing history. In this study, films of a 32 mol% disulfonated poly(arylene ether sulfone) random copolymer (BPS-32), polymerized in the potassium counter-ion form, were acidified using solid state and solution routes. The resulting acid counter-ion form materials were then converted to sodium, potassium, and calcium counter-ion forms via ion exchange. Additionally, several films were subjected to various thermal treatments in the solid state. Water uptake as well as water and NaCl permeability of these BPS-32 films were measured. Acidification via immersion of BPS-32 films in boiling sulfuric acid solution increased water uptake, and water and salt permeability increased. Exposure of samples to elevated temperature also influenced transport properties. For example, immersing BPS-32 films in boiling water for 4 h increased water sorption by 50%, water permeability by 2.3 times, and NaCl permeability by 8 times. The counter-ion form of the sulfonated polymer influenced the polymer’s transport properties, but these effects were weaker than the effect of thermal treatment. Generally, the BPS-32 samples prepared with different processing histories followed a trade-off between water/salt permeability selectivity and water permeability. These results suggest that, like many other glassy polymers, thermal processing history influences small molecule transport in these materials.  相似文献   

3.
The fundamental salt and water transport properties of cellulose ester polymers have been studied and correlated with their hydrated free volume, as probed by positron annihilation lifetime spectroscopy (PALS), to provide scientific insights for material development in seawater desalination. It has been found that the hydrated free volume is strongly dependent on water uptake. The water sorption in polymeric films reduces the fractional free volume (FFV) at low degrees of hydration due to the overwhelming hole-filling effect, but gradually increases FFV when more water sorption takes place as a result of the swelling effect. The diffusivity and permeability of both water and salt vary with changes in wet-state FFV. Diffusion selectivity of H2O/NaCl increases dramatically as the hydrated FFV decreases, while solubility selectivity of H2O/NaCl is dependent on both hydrated free volume and chemical structure. Moreover, thin freestanding films with no sub-layer support have been prepared by spin casting these polymers on silicon wafers for the purpose of eliminating internal concentration polarization (ICP) in the forward osmosis (FO) process. Based on the theoretical prediction from the solution-diffusion model, the performance ratio (i.e., the ratio of the experimental to theoretical water flux) of the sub-layer free films can be calculated. It can reach as high as around 50%, which is 2–3 times of the values reported elsewhere when testing traditional asymmetric membranes. Using a model 3.5 wt.% NaCl feed solution and a 2M NaCl draw solution, a water flux of 21.8 LMH has been observed, which is the highest value ever reported. The high water flux in the FO desalination process indicates that the concept of sub-layer-free thin films is promising for the next generation FO membranes.  相似文献   

4.
Sorption, diffusion, and permeation of three olefins (i.e., C2H4, C3H6, and C4H8) in poly(ether block amide) (PEBA 2533) membranes at different temperatures and pressures were investigated. This is pertinent to olefin recovery from resin off gas in polyolefin manufacturing. The relative contribution of solubility and diffusivity to the preferential permeability of olefins over nitrogen was elucidated. It was revealed that the favorable olefin/nitrogen permselectivity was primarily attributed to the solubility selectivity, whereas the diffusivity selectivity may affect the permselectivity negatively or positively, depending on the operating temperature and pressure. The olefin permeability is in the order of C4H8>C3H6>C2H4, the same order as their solubility in the membrane. In general, a low temperature favors both the permeability and selectivity. With an increase in pressure and/or a decrease in temperature, the sorption uptake of the olefin in the membrane increases progressively, and the diffusivity and hence the permeability are also enhanced because of the increased membrane plasticization/swelling caused by the penetrant sorbed in the membrane. At a given temperature, the pressure dependence of solubility and permeability could be described empirically by an exponential function. The limiting solubility at infinite dilution was correlated with the reduced temperature, and the hypothetical diffusivity at zero pressure was related to temperature by the Arrhenius equation.  相似文献   

5.
With a view to optimizing morphology and ultimately properties, membranes have been cast from relatively inexpensive block copolymer ionomers of fluorinated polyisoprene-block-sulfonated polystyrene (FISS) with various sulfonation levels, in both the acid form and the cesium neutralized form. The morphology of these membranes was characterized by transmission electron microscopy and ultra-small angle X-ray scattering, as well as water uptake, proton conductivity and methanol permeability within the temperature range from 20 to 60 °C. Random phase separated morphologies were obtained for all samples except the cesium sample with 50 mol% sulfonation. The transport properties increased with increasing degree of sulfonation and temperature for all samples. The acid form samples absorbed more water than the cesium samples with a maximum swelling of 595% recorded at 60 °C for the acid sample having 50 mol% sulfonation. Methanol permeability for the latter sample was more than an order of magnitude less than for Nafion 112 but so was the proton conductivity within the plane of the membrane at 20 °C. Across the plane of the membrane this sample had half the conductivity of Nafion 112 at 60 °C.  相似文献   

6.
In this study, a triblock copolymer, poly(styrene-isobutylene-styrene), was sulfonated to eight different levels ranging from 0.36 to 2.04 mequiv./g (13 to 82 mol% of styrene; styrene is 19 mol% of the unsulfonated block copolymer). These sulfonated polymers were characterized with elemental analysis and infrared spectroscopy to confirm sulfonation and determine accurate sulfonation levels. Infrared analysis revealed four additional stretching vibrations as a result of sulfonation. Also, a linear relationship between absorbance at 1006 cm−1 (stretching of the aromatic ring in styrene caused by the para-substituted sulfonic acid) and sulfonation level (measured by elemental analysis) was found. The density and water solubility of all the sulfonated polymers were measured and increased with increasing sulfonation level, as high as 1.31 g/cm3 and 351 wt%, respectively. In addition, a sulfonated triblock copolymer at 79 mol% sulfonation was neutralized with a cesium cation and revealed an increase in density, but a reduction in water solubility. This study demonstrates the resulting unique properties of sulfonated styrene-based block copolymers at higher ion-exchange capacities than previously reported.  相似文献   

7.
The gas permeability and permselectivity of a series of halogen-containing polycarbonates are discussed in terms of the fundamental solubility and diffusivity factors. These materials have structural features that hinder interchain packing and intrachain rotational mobility. Both diffusion and solubility coefficients are higher in materials with higher fractional free volumes. Diffusivity selectivities tend to increase with increasing restriction of intrachain torsional mobility. The materials with four bromine atoms substituted on the phenyl rings ortho to the carbonate linkages display a significantly increased diffusivity selectivity relative to conventional polycarbonate. This improvement in the ability of the polymer matrix to discriminate between gas molecules of different sizes is due to a reduction in intrachain torsional mobility. The reduction in chain mobility is indicated by higher glass transition and higher sub-Tg transition temperatures in the bromine-substituted materials. The materials with hexafluoroisopropylidene moieties have high fractional free volumes and exhibit a very significant increase in permeability relative to conventional bisphenol-A polycarbonate. The material with both the hexafluoro and the tetrabromo substitutions displays significant simultaneous increases in permeability and permselectivity relative to conventional polycarbonate.  相似文献   

8.
A series of sulfonated poly(ether sulfone ether ketone ketone) (SPESEKK) with different degree of sulfonation (DS) are prepared by the postsulfonation of PESEKK using chlorosulfonic acid as sulfonating agent and concentrated sulfuric acid as solvent. The chemical structures of the polymers are analyzed by the proton nuclear magnetic resonance. The thermal properties of the SPESEKK show that they are greatly influenced by the DS value and sulfonation time. The water uptake, proton conductivity, and Ion exchange capacity values increase as the sulfonation time increasing. The methanol permeability of the SPESEKK in the range of 7.02 × 10?8 to 4.477 × 10?7 cm2 s?1, is one or two orders of magnitude lower than that of Nafion 115. The morphology of the SPESEKK membranes is investigated by scanning electron microscope. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
采用“溶胀-嵌入-收缩”方法改性聚酰胺反渗透膜,制备了一种高脱硼反渗透膜。通过甲醇溶胀增加了高分子链之间的距离,为疏水性癸酸分子的嵌入提供了场所,然后在压力和浓差极化共同作用下,改性分子选择性嵌入聚酰胺膜的孔内;当甲醇分子离开后,聚酰胺膜收缩将癸酸分子固定在高分子网络中。实验借助溶胀和分子嵌入以及溶胀后的收缩调节聚酰胺膜的孔径大小;利用脂肪酸的疏水性降低聚酰胺膜的极性,从而实现增加空间位阻和减少氢键结合位点数量的目的。实验结果显示,改性膜的脱硼率和截盐率均明显升高,截盐率从90.36%增加到96.46%,脱硼率从未改性膜的47.85%增加到77.32%,渗透液的硼含量达到WTO的使用标准。虽然水和硼的渗透性均下降,但是水和硼的渗透选择性增加,证明该方法有利于提高水硼选择性。  相似文献   

10.
《分离科学与技术》2012,47(12-13):1611-1626
Abstract

Permeabilities, solubilities, diffusivities, and selectivities for He/CH4 and CO2/CH4 gas pairs are reported for four aromatic polyimides having systematic variations in intersegrnental packing and intrasegmental mobility. As intersegmental packing is disrupted by bulky substituents, gas diffusivities are generally increased, but diffusivity selectivities of He/CH4 and CO2/CH4 are correspondingly decreased. Simultaneous suppression of intrasegmental mobility and intersegmental packing, however, yields significant increases in both diffusivity and diffusivity selectivity, and consequently in permeability and permselectivity. For example, packing-disrupted and mobility-restricted 6FDA-DAF polyimide provides significantly higher permeabilities and permselectivities than commercially available polymers currently being used as membrane materials.  相似文献   

11.
通过将PES掺入高磺化度的SPEEK进行共混改性,采用流延法制备了一系列不同PES含量的SPEEK/PES共混膜,获得了SPEEK/PES共混膜的离子交换容、含水率、质子电导率等参数,特别测定了在全钒液流电池工作条件下钒(IV)离子渗透率。综合考察发现,当磺化温度为45℃,磺化时间控制为4h,得到SPEEK的DS为55%,掺入10%的PES,此时共混膜的电导率为0.08S/cm,钒(IV)离子渗透率为0.38×10^-6cm2/min,对钒(IV)离子选择性为Nation膜的5倍,含水率为35%,共混膜综合性能最好,基本满足全钒液流电池(VRB)的使用需求。  相似文献   

12.
以聚醚醚酮(PEEK)为原料,浓硫酸为磺化剂制备了不同磺化度的磺化聚醚醚酮(SPEEK)膜,以及磺化聚醚醚酮与聚乙烯醇(PVA)、正硅酸乙酯(TEOS)、磷钨酸的复合膜.分别对膜的电导率、阻醇性能和吸水率进行了研究.随着SPEEK膜磺化度的增大,膜的电导率有所提高,然而甲醇渗透系数也增大,膜的机械强度明显降低.SPEEK膜的吸水率低于Nafion 115膜,而PVA膜的吸水率则过高.  相似文献   

13.
The salt transport in a PEBA membrane used in pervaporative desalination was studied. The concentration profile of salt in the membrane during pervaporation was investigated experimentally using a multilayer membrane. The salt was found to be sorbed in the membrane but was not removed during the pervaporative desalination process, and the salt concentration in the membrane varied linearly with position. High purity water was obtained as the permeate as long as the permeate side was kept dry under vacuum. The accumulated salt uptake in the membrane follows the order of MgCl2 > NaCl > Na2SO4. The solubility of salt in the membrane follows the order of MgCl2 > NaCl > Na2SO4. Both the permeability and diffusivity of salt in the membrane follow the order of NaCl > MgCl2 > Na2SO4. The permeability of salt in the membrane is not influenced by the feed salt concentration. It is mainly determined by the diffusion coefficients.  相似文献   

14.
In 18 fluoropolymers with different repeating‐unit structures and crystallinities, the solubility, diffusivity, and permeability at 70°C of a polarizable nonpolar solute (tetrachloroethylene) were studied. The transport properties were mostly controlled by the polarity of the polymer and to a lesser degree by the polymer crystallinity. The highest permeability was observed in the dipole‐containing ethylene–chlorotrifluoroethylenes because of their high tetrachloroethylene solubility. The lowest permeability was observed in the hydrogen‐bonding poly(vinylidene fluoride) polymers because of the combination of low solute solubility and solute diffusivity. The tetrachloroethylene diffusivity was solute‐concentration‐dependent, and sorption curves were S‐shaped, indicating that the solute surface concentration was time‐dependent. The rate at which the surface concentration approached the saturation level was proportional to the product of Young's modulus, the square of the thickness of the dry polymer, and the logarithm of the solute diffusivity. Data for the water‐hyperbranched polymer and limonene–polyethylene conformed to the same relationship. Therefore, this provides a new tool for predicting the solute‐surface‐concentration time dependence from data obtained by independent measurements. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1474–1483, 2003  相似文献   

15.
High-performance polymers for water desalination were designed. A novel polysulfone was prepared via reaction between a new synthesized pyridine-based diol and bis(4-fluorophenyl) sulfone. Also a series of disulfonated copolymers with sulfonation content of 20–50 wt% were prepared to compare the hydrophilicity with the pristine polymer. The generated membranes were characterized by microscopic, mechanical, and thermal methods, and the influence of sulfonation degree on hydrophilicity, water flux, and salt rejection was followed. Water flux of sulfonated membranes was increased compare to pristine membrane as sulfonation increased, while the salt rejection decreased. Optimum application performance was obtained for membrane with 30 wt% sulfonation content. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48568.  相似文献   

16.
Proton conducting polymers derived from polybenzoyl-1,4-phenylene (PBP) and poly-p-phenoxybenzoyl-1,4-phenylene (PPBP) were synthesized by the Colon synthesis technique. The sulfonation of these proton conducting polymers was carried out using either sulphuric acid or tetramethylsiliylchlorosulfonate (TMSCl) as sulfonating agent, and their thermal properties were evaluated. Both sulfonated PBP and PPBP are thermally stable up to at least 215 °C. The sulfonated sPPBP exhibited good conductivity as proton conducting membranes at room temperature and were tested as electrolyte membranes for a single direct methanol fuel cell (DMFC) in terms of water absorption, methanol permeability and electrical performance. The water uptake of the sPPBP was found to be larger than that of the sPBP, i.e., 65 and 43 mol%, respectively. The permeability to methanol was found to be 10 times lower than sPPBP and sPBP compared to a Nafion® membrane. In spite of this, performance in a single DMFC was found to be twice inferior to that with Nafion® 117. Optimisation of the sulfonation level and of the electrode-membrane interfaces was lead to better results.  相似文献   

17.
The permeability of four structurally related poly(alkoxyphosphazenes), three isomers of poly(dibutoxyphosphazenes) (PBuP), and poly(di-neopentyloxyphosphazene) (Pneo-PeP), to 13 gases has been determined by the time-lag method. Systematic variations in chemical structure have shown a large effect of side chains on permeabilities and permselectivities. The permeability of poly(di-n-butoxyphosphazene) (Pn-BuP) is of the order of 10?8 cm3 (STP) cm/(cm2 s cmHg) for many gases, and the value for a large gas is higher than that for a smaller one. For small gases such as He and H2, poly(di-sec-butoxyphosphazene) (Ps-BuP) is as permeable as Pn-BuP, but its diffusivities for larger gases such as Xe and C3H8 are about one order lower than those of Pn-BuP. While the permselectivity of Pn-BuP is determined by the solubility, that of Ps-BuP depends on both the diffusivity and solubility factors. The property of poly(diisobutoxyphosphazene) (Pi-BuP) is intermediate between them. These polymers are constitutionally identical, and the only difference is the arrangements of carbons in the side groups. As the side chains become bulky, the permeability decreases, whereas the permselectivity increases. Further decreases of diffusivity and then permeability are observed for Pneo-PeP, whose side groups have one more methyl group than does Pi-BuP. But the solubility data are not much different from other three polymers and the diffusivity factor becomes more significant in permselectivity. The diffusivity depends on the polymer structure much more than does the solubility. The relationships between chemical structure and gas diffusivity and solubility are discussed.  相似文献   

18.
杨林  张云升  张春晓 《硅酸盐通报》2020,39(12):3775-3782
利用X射线计算机断层扫描(X-CT)联合Cs离子增强技术连续监测水分在非饱和水泥基材料中的动态传输过程,建立水分传输距离与时间的关系,获得水分传输的毛细吸水系数,在此基础上提出了计算水泥基材料渗透系数的理论模型。系统研究了水灰比、粉煤灰掺量、矿渣掺量和砂体积掺量对水泥基材料毛细吸水系数和渗透系数的影响,结果表明:当水灰比从0.35增大到0.55时,硬化水泥浆体的毛细吸水系数从2.07×10-4 m/s1/2增大到3.22×10-4 m/s1/2,而固有渗透系数增大1个数量级;粉煤灰的掺入能有效降低浆体的水分传输性能,且粉煤灰的最佳掺量为30%(质量分数),当矿渣掺量为30%(质量分数)时,硬化浆体的固有渗透系数比掺同等质量粉煤灰的高1个数量级;当砂体积掺量从0%增加到40%时,砂浆的毛细吸水系数和固有渗透系数均下降,当砂体积掺量大于42.4%时,砂浆的界面过渡区(ITZ)连通,砂浆的毛细吸水系数增大。  相似文献   

19.
Two aromatic polyesters and three copolyesters were synthesized by interfacial polycondensation using 4,4′‐(hexafluoroisopropylidene)diphenol (HFD) and two phthalic dichlorides, isophthaloyl dichloride (ISO) and 5‐tertbutyl‐isophthaloyl dichloride (TERT). The polymers obtained were soluble in common chlorinated solvents. The properties of these aromatic polyesters and copolyesters were characterized by FTIR, density, inherent viscosity, TGA, and DSC. Thermal properties such as glass transition temperature, onset of decomposition, and thermal stability of the homopolymer, poly(hexafluoroisopropilydene)5‐tertbutylisophthalate (HFD/TERT), were higher than those of homopolymer poly(hexafluoroisopropilydene)isophthalate (HFD/ISO). Thermal properties of the copolyesters HFD/TERT‐co‐HFD/ISO depend upon the amounts of the tertbutyl group HFD/TERT, present in the copolymer. Gas permeability coefficients of all polyarylates were measured at 35°C. The effect of different concentrations of the bulky tertbutyl group at the 5‐position in the isophthaloyl moiety on He, O2, N2, and CO2 permeability, diffusion, and solubility coefficients were determined. Gas permeability and diffusivity increase as the concentration of TERT moiety increases in the copolymers. The results indicate that polymers containing the largest amounts of the bulky lateral tertbutyl group show the highest gas permeability. The increment in gas permeability and diffusivity produces a decrease in selectivity, which is attributed to the effect of the large pendant tertbutyl groups in the aromatic polyesters and copolyesters, which decrease the chain packing efficiency and induce a larger fractional free volume. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2207–2216, 2007  相似文献   

20.
The permeability and solubility for water and ethanol in PTFEP membranes were determined experimentally, and the data were analyzed by the solution-diffusion model. The permeability for water and ethanol ranged from several hundreds to several thousands Barrers, and they increased exponentially with the vapor activity and increased with temperature. At the same temperature and vapor activity, the permeability ratio between water and ethanol ranged from 5.7 to 2.3, and it decreased as the vapor activity increased. The sorption isotherms for water and ethanol were fitted by the Henry’s law relationship. The solubility decreased as the temperature increased so that the heat of sorption for both water and ethanol was negative. The solubility for water was more than twice the solubility for ethanol. The solubility seems to be inversely proportional to the molecular size of the penetrants in such a system. The solubility ratio between water and ethanol is smaller than their molecular volume ratio possibly due to the slightly stronger nonpolar interaction and the higher degree of plasticization in the ethanol-polymer system. The diffusivity for water and ethanol ranged from 10−8 to 10−7 cm2/s, and the values for water were larger than those for ethanol at the same temperature and vapor activity. The diffusivity for water and ethanol also increased exponentially with the vapor activity. The diffusivities for water and ethanol increased with temperature and their activation energies of diffusion were very similar possibly due to the same energy characteristic of polymer main chain movement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号