首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Norman R. Horn 《Polymer》2011,52(24):5587-5594
We have demonstrated in previous studies that thin glassy polymer films exhibit complex responses to highly sorbing penetrants, such as CO2, relative to their thick film counterparts. In this paper, we apply similar experiments to two new polymers, including a polysulfone made from bisphenol A (PSF), and poly(2,6-dimethyl-1,4-phenylene oxide) (PPO), and compare their responses to Matrimid® to understand better CO2 plasticization behavior of these materials when in thin film form. As expected, the extent of plasticization response tracks with CO2 solubility; CO2 diffusivity may also be an important factor at shorter exposure times. Experiments at longer CO2 exposure times revealed that each polymer experiences the permeability maximum observed in our previous work as well. However, polymers that are not as highly sorbing to CO2, like polysulfone, may not at some conditions exhibit a distinct permeability maximum but will still decrease in permeability after a long period of CO2 exposure owing to physical aging.  相似文献   

2.
Lili Cui  D.R. Paul  W.J. Koros 《Polymer》2011,52(24):5528-5537
Membranes made from glassy polymers have been of great interest in the past decade for CO2 removal from natural gas streams; however, strongly soluble gases, such as CO2, can cause “plasticization” of polymer membranes, which greatly reduces the separation efficiency. This work examines the response of several 6FDA-based polyimides thin film membranes with thicknesses around 200 nm to CO2 exposure and physical aging. DABA units are incorporated to create crosslinkable sites for such materials. Introducing DABA units to the 6FDA-DAM and 6FDA-mPDA polymers seems to result in materials even more prone to CO2 plasticization. A unique thermal annealing approach is used to crosslink the polyimides via decarboxylation of the DABA units; the resulting crosslinked polymers appear to be much more plasticization resistant at high CO2 pressures compared to their DABA containing counterparts prior to crosslinking. Prior thermal history plays a significant role in both the physical aging of the thin film membranes and their CO2 plasticization resistance particularly for chemical structures that tend to lead to high free volume and permeability.  相似文献   

3.
Y. Huang 《Polymer》2004,45(25):8377-8393
The physical aging at 35 °C of three glassy polymers, polysulfone, a polyimide and poly(2,6-dimethyl-1,4-phenylene oxide), has been tracked by measurement of the permeation of three gases, O2, N2, and CH4, for over 200 days. Several techniques were used to accurately determine the thickness of films (∼400 nm-62 μm) in order to obtain absolute permeability coefficients and to study the effects of film thickness on the rate of physical aging. Each film was heated above the polymer Tg to set the aging clock to time zero; ellipsometry revealed that this procedure leads to isotropic films having initial characteristics independent of film thickness. A substantial pronounced aging response, attributed to a decrease in polymer free volume, was observed at temperatures more than 150 °C below Tg for thin films of each polymer compared to what is observed for the bulk polymers. The films with thicknesses of approximately 400 nm of the three polymers exhibit an oxygen permeability decrease by as much as two-fold or more and about 14-15% increase in O2/N2 selectivity at an aging time of 1000 h. The results obtained in this study were compared with prior work on thickness dependent aging. The effects of crystallinity on physical aging were examined briefly.  相似文献   

4.
Brandon W. Rowe 《Polymer》2010,51(16):3784-6125
The physical aging behavior of thin glassy polysulfone (PSF) films (∼125 nm) with different previous histories was tracked using gas permeability measurements. The initial states of these materials were modulated by thermal annealing at fixed temperatures below the glass transition or by exposure to high pressure (800 psig (56.2 bara)) CO2 for various times. Regardless of the previous history, the nature of the aging response in these samples was consistent with the aging behavior of an untreated film that was freshly quenched from above Tg, i.e., permeability decreased and pure gas selectivity increased with aging time. However, the extent of aging-induced changes in transport properties of these materials depended strongly on previous history. The aging behavior was described using Struik’s aging model by allowing the initial conditions to depend on each sample’s previous history.  相似文献   

5.
Membrane-based separations play a key role in energy conservation and reducing greenhouse gas emissions by providing low energy routes for a wide variety of industrially-important separations. For reasons not completely understood, membrane permeability changes with time, due to physical aging, and the rate of permeability change can become orders of magnitude faster in films thinner than one micron. The gas transport properties and physical aging behavior of free-standing glassy polysulfone and Matrimid® films as thin as 18 nm are presented. Physical aging persists in glassy films approaching the length scale of individual polymer coils. The films studied ranged from 18–550 nm thick. They exhibited reductions in gas permeability, some more than 50%, after 1000 h of aging at 35 °C, and increases in selectivity. The properties of these ultrathin films deviate dramatically from bulk behavior, and the nature of these deviations is consistent with enhanced mobility and reduced Tg in ultrathin films. The Struik physical aging model was extended to account for the influence of film thickness on aging rate, and it was shown to adequately describe the aging data.  相似文献   

6.
This work deals with the study of comb-like vs. arborescent grafted copolymers made of poly(chloroethyl vinyl ether)-g-polystyrene (PCEVE-g-PS). We describe how the molecular architecture of the branched polymers affects their nanoscale organization in thin films, as observed using atomic force microscopy. The results indicate that modifying the molecular architecture from a ‘generation-zero’ comb-like (PCEVE-g-PS) to a ‘first-generation’ hyperbranched (PCEVE-g-(PS-b-PCEVE-g-PS)) architecture strongly modifies the observed geometrical parameters of the molecules, in good agreement with the expected evolution of the molecular dimensions and the corresponding data obtained in solution.The surface organization of the (PCEVE-g-PS) copolymer molecules is also strongly conditioned by the interplay between the molecule-substrate interactions and the molecule-molecule interactions, leading to different possible orientations of the lateral branches with respect to the surface and thus to different final morphologies.  相似文献   

7.
The glass-transition temperature (Tg) of polymer thin films can be strongly influenced by the combined effects of the supporting solid substrate and the free surface. The relative importance of these two effects, which often compete with each other, depends on the strength of the substrate–film interactions. Utilizing an atomistically informed coarse-grained model for poly(methyl methacrylate) (PMMA), here we uncover the relationship between the substrate–film interfacial energy and the spatial distribution of Tg across thin films. We find that above a critical interfacial energy, the linear dependence of film Tg on the interfacial energy breaks down and film Tg attains an asymptotic value. Analyses on the spatial variation of Tg across the thin film reveal that the short-range interface near the cohesive surface generates a long-range interphase that leads a spatially uniform appreciation of Tg throughout the film, unlike weakly cohesive surfaces that show sharp gradients along the depth of film. These findings explain recent experiments and reveal a versatile approach for tuning film Tg via engineered substrate-film interactions.  相似文献   

8.
Thomas M. Murphy 《Polymer》2011,52(26):6117-6125
The physical aging of polymers in confined environments has been an area of intensive study in recent times. The rate of physical aging in thin films of many polymers used in gas separation membranes is dependent on film thickness and accelerated relative to bulk. In this study, the physical aging of polymer films with alternating glassy polysulfone and rubbery polyolefin layers was monitored by measuring the gas permeability of O2 and N2 as a function of aging time at 35 °C. The alternating layer structures were formed by a melt co-extrusion process. The polysulfone layers have thicknesses ranging from 185 to 400 nm, and the overall thicknesses of the films are on the order of 80-120 μm. The aging of freestanding thin films of polysulfone is rapid and exhibits clear thickness dependence, whereas the aging of multilayered films was observed to be similar to bulk and showed no dependence on layer thickness. At 1000 h of aging time, a 400 nm freestanding PSF film decreased in O2 permeability by 35%, whereas on average the bulk and multilayered films only experienced a decline of 10-15%. A slight increase in O2/N2 selectivity for the multilayered films was observed over the course of aging.  相似文献   

9.
The dissolution rates (DR) in methyl ethyl ketone (MEK) of thin films of poly(methyl methacrylate), (PMMA), were measured using interferometry. Films were spun on silicon-oxide coated wafers. After baking at 155°C for one hour the dry films were about 1 μm thick. PMMA samples with Mn of 6000 to 320 000 were prepared by (a) polymerization and fractionation, and (b) electron beam bombardment of coated wafers. Both preparations resulted in non-linear behaviour when log DR was plotted against log Mn. The irradiated samples uniformly had DR values that were about 2.5 × those of the unexposed samples of the same Mn. Plasticization of PMMA by poly(ethylene oxide), PEO, of Mn = 4000 also changed DR in direct proportion to the amount of PEO added. With a weight fraction of 0.2 PEO, the DR was double that for PMMA alone.  相似文献   

10.
An in situ and single-step route to creating a uniform dispersion of lanthanum(III) oxide nanoparticles in a polyimide is described. The process of thermally evolving, from the diaquotris(2,4-pentanedionato)lanthanum(III) complex, to a homogeneous dispersion of lanthanum(III) oxide nanoparticles within a 6FDA/1,3(3)-APB polyimide matrix has been characterized. The report also describes the resulting changes in the final properties of the hybrid material relative to the neat polyimide. Characterization techniques include dielectric spectroscopy, small angle X-ray scattering, X-ray photoelectron spectroscopy, and gas permeability.  相似文献   

11.
The properties of a thin polymer film can be significantly affected by the presence of a penetrant. This can have potential implications for many technological applications, such as protective and functional coatings, sensors, microelectronics, surface modification and membrane separations. In situ ellipsometry is a powerful technique for the characterization of a film in contact with a penetrant. The main advantages of ellipsometry include the very high precision and accuracy of this technique, combined with the fact that it is non-intrusive. Recent advances in the speed and automation of the technique have further expanded its application.This article provides an overview of the research that has been done with in situ UV–vis ellipsometry on penetrant-exposed polymeric films, in the last 15–20 years. The focus is predominantly on films that are not attached covalently to a substrate. Polymer brushes and grafts are therefore excluded. This review addresses a variety of topics, covering instrumental aspects of in situ studies, approaches to data analysis and optical models, reported precision and repeatability, the polymer-penetrant systems that have been studied, the kind of information that has been extracted, and other in situ techniques that have been combined with ellipsometry. Various examples are presented to illustrate different practical approaches, the consequences of the optical properties of the ambient, and the various ways that have been employed to bring polymer films in contact with a penetrant, ranging from simple ex situ-like configurations (i.e., drying studies) to complex high pressure cells. The versatility of in situ ellipsometry is demonstrated by examples of the distinctive phenomena studied, such as film dilation, penetrant diffusion mechanisms, film degradation, electrochemical processes, and the broad variety of polymer-penetrant systems studied (glassy and rubbery polymers, multilayer stacks, etc.). An outlook is given on possible future trends.  相似文献   

12.
Latex and solvent-cast films have been prepared from poly(butyl methacrylate) surfactant-free latices and their permeabilities to water vapour and an aqueous organic solute (p-nitrophenol) have been studied. Latex films show considerable ageing effects and their performance is very dependent upon the conditions of film formation but their barrier properties are not necessarily inferior. A greater dependence on film orientation is evident for latex films.  相似文献   

13.
《Ceramics International》2016,42(12):13555-13561
In this article, we report a comparative study of the influence of pressure-assisted (1.72 MPa) versus ambient pressure thermal annealing on both ZnO thin films treated at 330 °C for 32 h. The effects of pressure on the structural, morphological, optical, and gas sensor properties of these thin films were investigated. The results show that partial preferential orientation of the wurtzite-structure ZnO thin films in the [002] or [101] planes is induced based on the thermal annealing conditions used (i.e., pressure assisted or ambient pressure). UV–vis absorption measurements revealed a negligible variation in the optical -band gap values for the both ZnO thin films. Consequently, it is deduced that the ZnO thin films exhibit different distortions of the tetrahedral [ZnO4] clusters, corresponding to different concentrations of deep and shallow level defects in both samples. This difference induced a variation of the interface/bulk-surface, which might be responsible for the enhanced optical and gas sensor properties of the pressure-assisted thermally annealed film. Additionally, pressure-assisted thermal annealing of the ZnO films improved the H2 sensitivity by a factor of two.  相似文献   

14.
The phase separation behavior of polymer blend thin films of 100-150 nm was studied using differential AC Chip calorimetry. By taking advantage of the low sensor and sample mass inherent to chip calorimetry, a new methodology based on temperature jumps was developed. This methodology allowed the construction of the state diagram of polymer blend thin films as evidenced for two model systems (PVME/PS and PVME/Phenoxy) displaying a lower critical solution temperature behavior.The state diagram in thin films was compared to the one obtained in bulk using Modulated Temperature DSC. In comparison with bulk, a lower phase separation temperature and a broadening of the homogeneous glass transition temperatures is observed for both model systems. This might be an indication of a surface induced ‘destabilization’ by composition gradients which are not present in bulk.  相似文献   

15.
《Ceramics International》2016,42(16):18318-18323
MoS2 thin films were prepared by radio frequency (RF) magnetron sputtering and then annealed in air. X-ray diffraction (XRD), field-emission electron scanning microscopy (FESEM) and transmission electron microscopy (TEM) were adopted to characterize the phase structure and surface morphology. Interestingly, upon thermal annealing in air, MoS2 thin films changed into α-MoO3 with mazy morphology, and the thin films were covered by MoO3 nano-sheets with a length of 30–50 nm and a width of 10 nm. α-MoO3 thin films with mazy morphology showed excellent response to NO gas at room temperature. The response of 5% and 92% was obtained at 5 ppm and 200 ppm, respectively, and the response and recovery times were 30 s and 1500 s. Moreover, the mazy structure of MoO3 exhibited good selectivity to NO gas with respect to SO2, NH3 and H2 gases. The high surface-to-volume ratio was the dominant factor for high sensing performance.  相似文献   

16.
《Ceramics International》2017,43(4):3562-3568
In this article, the gas sensing properties of Al-doped ZnO thin films have been reported where the nanocrystalline ZnO based thin films were well deposited by a simple and inexpensive ‘chemical spray pyrolysis (CSP)’ technique. Films have been found to be uniform, pinhole free and well adherent to the substrate. The morphology, structures, and surface roughness of the deposited Al-doped ZnO thin films were studied by various types of characterization techniques. In addition, the authors have observed that the sensor response and selectivity towards CO gas is improved by the Al doping at a low operating temperature. XRD results showed that the obtained films are nanocrystalline in nature with hexagonal wurtzite phase. Further, the annealed films were used for detection of CO in the air and maximum response was observed at 175 °C. The improvement in sensor response of Al-doped ZnO thin films to CO gas attributed to the defect chemistry, crystallite size and surface roughness.  相似文献   

17.
J. Rysz 《Polymer》2005,46(3):977-982
Surface directed phase separation in thin polymer blend film has been studied with Monte Carlo simulations using a simple model based on reptation method. Time evolution of phase structure was characterized quantitatively by morphological measures (the Minkowski functionals) in addition to the inspection of concentration versus depth profiles. It was shown that the dynamical scaling hypothesis holds for the Minkowski functionals describing morphologies at the early stages of phase separation in thin films. Two time regimes with different scaling exponents (0.25, 0.33) were found for the growth of the characteristic length scale in the system corresponding to various transport mechanisms (diffusion along- and normally to the interface). Fast decrease in the morphological measures observed at the end of phase separation was attributed to the confinement of the thin film.  相似文献   

18.
The transport of p-nitrophenol across films formed from surfactant-free poly(butyl methacrylate) latices has been investigated with a view to better understanding the morphology of, and morphological changes occurring in, such films. The importance of the temperature and time, both of film formation and of storage, are identified and related to the state of coalescence of the latex particles within the films. especially with respect to interparticle boundaries.  相似文献   

19.
Electrochromic iridium oxide thin films were deposited onto fluorine doped tin oxide coated glass substrates from an aqueous iridium chloride solution by pneumatic spray pyrolysis technique. The as-deposited samples were X-ray amorphous. The electrochromic properties of thin films were studied in an aqueous electrolyte (0.5N H2SO4) using cyclic voltammetry (CV), chronoamperometry (CA) and spectrophotometry. Iridium oxide films show pronounced anodic electrochromism owing to Ir+4 ↔ Ir+3 intervalency charge transition. The reversibility of cyclic process in Ir oxide films is found to be higher, which increases with increasing number of colour-bleach cycles.  相似文献   

20.
Thermoelectric power generators and coolers have many advantages over conventional refrigerators and power generators such as solid-state operation, compact design, vast scalability, zero-emissions and long operating lifetime with no maintenance. However, the applications of thermoelectric devices are limited to where their unique advantages outweigh their low efficiency. Despite this practical confine, there has been a reinvigorated interest in the field of thermoelectrics through identification of classical and quantum mechanical size effects, which provide additional ways to enhance energy conversion efficiencies in nanostructured materials. Although, there are a few reports which demonstrated the improvement of efficiency through nanoengineering, the successful application of these nanostructures will be determined by a cost-effective and high through-put fabrication method. Electrodeposition is the method of choice to synthesize nanoengineered thermoelectric materials because of low operating and capital cost, high deposition rates, near room temperature operation, and the ability to tailor the properties of materials by adjusting deposition conditions. In this paper, we reviewed the recent progress of the electrodeposition of thermoelectric thin films and nanostructures including Bi, Bi1−xSbx, Bi2Te3, Sb2Te3, (Bi1−xSbx)2Te3, Bi2Se3, Bi2Te3−ySey, PbTe, PbSe, PbSe1−xTex and CoSb3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号