首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrogen production from ethanol by autothermal reforming over an Rh/CeO2 catalyst was investigated with a stoichiometric feed composition. Ethanol as well as the reaction intermediates like acetaldehyde and acetone was entirely converted to hydrogen and C1 products at 673 K, and methane steam reforming and reverse water gas shift were the major reactions above 823 K. The Rh/CeO2 catalyst exhibited stable activity and selectivity during 70 h on-stream operation at 823–923 K without obvious deactivation evidenced by the constant effluent gas composition. Structural analysis of the used catalyst revealed that CeO2 prevented effectively the highly dispersed Rh particles with sizes of 1–3 nm from sintering and thus maintained sufficient Rh–CeO2 interfacial areas, which facilitated coke gasification through the high oxygen storage-release capacity.  相似文献   

2.
Pd–Ru, Pd and Ru nanoparticles supported on Vulcan XC-72 carbon were prepared by chemical reduction of PdCl2 and/or RuCl3 in aqueous solution using NaBH4 as the reducing agent. Transmission electron microscopy measurements showed that Pd–Ru particles were uniformly dispersed on carbon. The particle size of Pd–Ru is around 5–9 nm. X-ray diffraction analysis indicated that Ru formed alloy with Pd in Pd–Ru/C catalyst. The electroreduction of hydrogen peroxide on Pd–Ru/C, Pd/C and Ru/C in H2SO4 solution was examined by linear sweep voltammetry and chronoamperometry measurements. Results revealed that Pd–Ru/C catalyst exhibited higher electrocatalytic activity for hydrogen peroxide reduction than Pd/C and Ru/C. All the catalysts showed good stability for hydrogen peroxide electroreduction in H2SO4 electrolyte.  相似文献   

3.
A structured Pt(1 wt%)/ceria–zirconia/alumina catalyst and the metal-free ceria–zirconia/alumina were prepared, by dip-coating, over a cordierite monolithic support. XRD analyses and Rietveld refinements of the structural data demonstrate that in the Pt supported catalysts ceria–zirconia is present as a Ce0.6Zr0.4O2 homogeneous solid solution and that the deposition over the cordierite doesn’t produce any structural modification. Moreover no Pt sintering occurs.By comparing the XRD patterns recorded on Pt/ceria–zirconia/alumina and ceria–zirconia/alumina after three redox cycles, it results that Pt, favouring the structural reorganization of the ceria–zirconia into one cubic solid solution, prevents any CeAlO3 formation. On the contrary, such phase due to the interaction between Ce3+ and the alumina present in the washcoat is detected when redox cycles are carried out on the ceria–zirconia metal free.Transmission electron microscopy (TEM) investigations of the redox cycled Pt/ceria–zirconia/alumina catalyst detected ceria–zirconia grains with diameter between 10 and 35 nm along with highly dispersed Pt particles (2–3 nm) strongly interacting with ceria.Scanning electron microscopy (SEM) and EDX analyses, recorded on the redox cycled Pt/ceria–zirconia/alumina washcoated monolith evidence a homogeneous distribution of the active components through the channels even after redox aging.Reduction behaviour and CO oxidation activity are in good agreement with the structural modification of the solid solution induced by the redox cycles and reflect the positive effect of Pt/ceria interaction on the catalytic performances.The effect of redox aging on the NO reduction by C3H6, in lean conditions, was investigated over the Pt/ceria–zirconia/alumina monolith. The catalyst shows at low temperature (290 °C) good NO removal activity and appreciable selectivity to N2.  相似文献   

4.
This work provides a detailed electrochemical impedance study for formic acid electro-oxidation on size-controlled Pd/C nanoparticles, the synthesis of which was done by a simple protocol using ethylene glycol as a reducing agent. By controlling KOH concentration, this strategy provides a synthesis method for Pd nanoparticles with a selective size range of 3.9–7.5 nm. The as-prepared Pd nanoparticles exhibited size-dependent electrochemical property and electrochemical characterizations of four different Pd/C nanocatalysts (3.9, 5.2, 6.1, and 7.5 nm) showed that Pd particle with average size of 6.1 nm has the highest formic acid oxidation activity. Electrochemical impedance-based characterizations of formic acid oxidation on Pd/C suggested that at high potentials the adsorbed oxygen species could block the catalyst surface and inhibit the oxidation reaction, as reflected by the negative polarization resistance. Unlike Pd/C, the intermediate adsorbed CO species (COads) plays a critical role for formic oxidation on Pt/C and thus the impedance spectra of Pd/C and Pt/C appear different potential-dependent patterns in the second quadrant. The issue of CO was investigated by an impedance investigation of Pd/C in a mixture of formic acid containing dissolved CO.  相似文献   

5.
A new carbon supported Pt (Pt/C(b)) catalyst was prepared by reducing H2PtCl6 in glycol solution using formic acid as a reducing agent, and has been found in this work to be highly active and stable for the electrochemical oxidation of ethanol. The preparation produces highly dispersed Pt particles, of 2.6 nm average size, and with high electrochemical surface area, 98 m2/g. The apparent activation energy of ethanol oxidation over the Pt/C(b) catalyst electrode is low, 10–14 kJ/mol, over the range of potentials from 0.3 to 0.6 V.  相似文献   

6.
The highly active Pd/C catalysts for formic acid electrooxidation have been prepared by a modified polyol process at different pH values of reaction solutions and different reducing temperatures, respectively. Their physical properties have been characterised by energy dispersive analysis of X‐ray, X‐ray diffraction and transmission electron microscopy. Their electrochemical performances for formic acid electrooxidation have been tested by cyclic voltammetry and amperometric it curves. The results of physical characterisations show that all the Pd/C catalysts present an excellent face centered cubic crystalline structure. Their particle sizes are decreasing firstly and then increasing with the increasing of the pH values of reaction solutions. The reducing temperatures also markedly affect the Pd particle sizes. And their nanoparticles have narrow size distributions and are highly dispersed on the surface of carbon support, and Pd metal loading in Pd/C catalyst is similar to the theoretical value of 20 wt.%. The results of electrochemical measurements present that the Pd/C catalyst prepared by waterless polyol process at the pH value of 10 and the reducing temperature of 120 °C has the smallest particle size of about 5.6 nm, and exhibits the highest catalytic activity (1172.0 A · gPd<?h‐2.85>–1<?h.8>) and stability for formic acid electrooxidation.  相似文献   

7.
The catalytic activity and long-term stability of 2% Pd/LaMnO3-ZrO2 catalysts for natural gas combustion were deeply investigated. The catalyst, prepared via solution combustion synthesis, was completely characterized (XRD, BET, FESEM/EDS, TPC/TPD/TPR and FT-IR analysis) in the fresh status, and in the aged one, after prolonged treatment under hydro-thermal ageing and S-compounds poisoning (up to 3 weeks of hydro-thermal treatment at 800 °C under a flow of domestic boiler exhaust gases typical composition of 9% CO2, 18% H2O, 2% O2 in N2, including 200 ppmv of SO2). An increased catalytic activity towards NG combustion with ageing was detected: the T50, in fact, got lowered from 570 (fresh sample) to 465 °C (after 3 weeks ageing). Highly dispersed Pd centers were predominant on fresh catalyst. Upon ageing, oxygen covered Pd metal particles formed, at the expense of dispersed cationic and zerovalent Pd atoms. The increase in the catalytic activity was associated to the phase modification occurring in the bulk support, where Mn oxides, active towards CH4 combustion, segregated. Moreover, bands due to sulfate species were detected in aged samples: IR analysis showed that Pd atoms did not interact significantly with these species. The bands of sulfate species decreased in intensity after 3 weeks ageing, likely mostly due to sintering of the catalyst, with the corresponding decrease in the surface area.  相似文献   

8.
The objective of the present study was to select the optimal catalyst and operating conditions for the manufacture of C9-alcohol, using C9-aldehyde and hydrogen, in a trickle bed reactor. When CaO, Ce2O3 or MgO was added as a promoter to the Ni/kieselguhr catalyst, the BET and Ni surface areas were increased. In the reaction for the manufacture of C9-alcohol, using C9-aldehyde and hydrogen in a batch reactor, a Ni–MgO/kieselguhr catalyst showed the highest activity. In addition, the catalyst using Na2CO3 as a precipitant showed the highest activity. According to the result of an experiment to find the optimal reaction conditions for C9-alcohol synthesis, using C9-aldehyde and hydrogen in a trickle bed reactor loaded with Ni–MgO/kieselguhr catalyst, the highest yield of C9-alcohol was 91.5 wt% at 130 °C, 400 psi and WHSV = 3. The C9-aldehyde hydrogenation performance of the Ni–MgO/kieselguhr catalyst was similar to that of a Cu/ZnO/Al2O3 catalyst, but superior to that of Cu–Ni–Cr–Na/Al2O3 and Ni–Mo/Al2O3 catalysts. In a long-term catalysis test, the Ni–MgO/kieselguhr catalyst showed higher stability than the Cu/ZnO/Al2O3 catalyst.  相似文献   

9.
The catalytic degradation method of polychlorinated biphenyls (PCBs) using the palladium on activated carbon–triethylamine (Pd/C–Et3N) system under ambient hydrogen pressure and temperature was developed. Aroclor® 1254, Aroclor® 1248, 10% Aroclor® 1254 in paraffin oil and PCBs from capacitor could be completely dechlorinated to afford biphenyl and Et3N·HCl. Fifteen pure PCB congeners, including the highly toxic co-planar PCBs, were smoothly dechlorinated to biphenyl within 1 or 2 h using 10% Pd/C (10% of substrate weight) and Et3N (1.2 equiv. vs. Cl numbers). However, the dechlorination of the fully ortho-substituted PCB congeners was delayed and chlorine atoms on the ortho-positions still remained under the hydrogenation conditions, but these PCB congeners are only slightly present in the commercial PCB mixture. The Pd/C–Et3N–H2 system offers a simple, safe, and inexpensive degradation method of PCBs under mild reaction conditions.  相似文献   

10.
Heterogeneous Pd/C catalyst was applied to the Suzuki–Miyaura vinylation of various aryl and heteroaryl halides under aerobic and mild reaction conditions [1.0 mmol aryl halide, 1.5 mmol potassium vinyltrifluoroborate, 3.0 mmol K3PO4·H2O, 0.1 mol% Pd/C(EVO), 1 mL NMP, 100 °C, 24 h]. Useful isolated yields (57–73%) were achieved. In some cases, the catalytic system should be tuned to face the reactivity of the aryl halides: while 0.1 mol% Pd/C is sufficient for almost all aryl bromides, 1.0 mol% Pd/C was used for free phenols.The heterogeneous catalyst was proved to be stable upon several catalytic cycles; however, the results showed that this was dependent on addition of the base. Hot-filtration experiment indicates that the activity was mainly due to leached Pd-species, indicating that the Pd/C catalyst acts as a palladium reservoir.  相似文献   

11.
Carbon-supported core–shell structured Ru@PtxPdy/C catalysts with PtxPdy as shell and nano-sized Ru as core are prepared by a successive reduction procedure. The catalysts are extensively characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The formic acid oxidation activity of Ru@PtxPdy/C varies with the varying Pt:Pd atomic ratio. The peak oxidation potential on Ru@Pt1Pd2/C shifts negatively for about 200 mV compared with that of Pd/C. The higher electro-catalytic activity toward formic acid oxidation on core–shell structured Ru@PtxPdy/C catalyst than that on PtxPdy/C suggests the high utilization of noble metals. In addition to the enhanced noble metal utilization, Ru@PtxPdy/C catalyst also shows improved stability as evidenced by chronoamperometric evaluations.  相似文献   

12.
Ceria supported 2 wt% Pd catalysts for low-temperature methane combustion were prepared by the impregnation (IM) and deposition–precipitation (DP) methods, which are denoted as Pd–IM and Pd–DP, respectively. DP was found to be an available method for achieving high activity and stability of the Pd/CeO2 catalyst. The temperatures for methane ignition (T10%) and total conversion (T100%) over Pd–DP are 224 and 300 °C at GHSV of 50,000 h−1, which are 83 and 110 °C lower than the corresponding temperatures of Pd/Al2O3. X-ray diffraction (XRD), Raman and X-ray photoelectron spectroscopy (XPS) analyses show that palladium species in Pd–DP is highly dispersed, positively charged and difficultly reduced. Raman spectra disclosed that the largest concentration of defects and/or oxygen vacancies was formed in Pd–DP catalyst. A kind of cationic PdOδ+ sites with higher binding energies than PdO are in close vicinity to the oxygen vacancies in the CeO2 support and might act as the active centers for methane oxidation. Furthermore, the deactivation and steam aging tests for Pd–DP showed that the performance of this type of palladium was very stable and could be repeatedly recovered after several long time aging tests.  相似文献   

13.
In this article, Pd nanoparticles supported on carbon-modified rutile TiO2 (CMRT) as a highly efficient catalyst for formic acid electrooxidation were investigated. Pd/CMRT catalyst was synthesized by using liquid phase reduction method in which Pd nanoparticles was loaded on the surface of CMRT obtained through a chemical vapor deposition (CVD) process. Pd/CMRT shows three times the catalytic activity of Pd/C, as well as better catalytic stability towards formic acid electrooxidation. The enhanced catalytic property of Pd/CMRT mainly arises from the improved electronic conductivity of carbon-modified rutile TiO2, the dilated lattice constant of Pd nanoparticles, an increasing of surface steps and kinks in the microstructure of Pd nanoparticles and slightly better tolerance to the adsorption of poisonous intermediates.  相似文献   

14.
Jong-Hwan Jeon  Jung-Hyurk Lim  Kyung-Min Kim   《Polymer》2009,50(19):4488-4495
The PS-grafted multiwalled carbon nanotubes (MWNTs) were produced by the bromo-ended PS (PS-Br) and pristine MWNTs in 1,2-dichlorobenzene at 110 °C for 72 h via atom transfer radical polymerization (ATRP). Bromo-ended PS (PS-Br) used as an initiator for the functionalization of MWNTs was synthesized with styrene by ATRP conditions using CuBr and N,N,N′,N′,N″-pentamethyldiethylenetriamine as catalyst. The PS-grafted MWNTs were fully characterized by 1H-NMR, FT-IR, DSC, TGA, and SEM. The PS-grafted MWNTs were found to be highly soluble in a variety of organic solvents. The PS was chemically attached to the surfaces of MWNTs via ATRP approach, and the grafting amount of PS was 40–90%. From TGA and DSC measurements, the PS-grafted MWNTs were decomposed at lower temperature compared to that of PS-Br, and the functionalization of MWNTs increased the glass-transition temperature (Tg) of the grafted PS. The PS/PS-grafted MWNTs nanocomposites were prepared with PS and PS-grafted MWNTs by solution mixing in dimethylformamide (DMF). The resulting nanocomposites were found to be the homogeneous dispersion of PS-grafted MWNTs in PS matrix via aromatic (π–π) interactions between PS and PS-grafted MWNTs as determined by SEM and TEM.  相似文献   

15.
Small Cu clusters (~ 1 nm) were highly dispersed over boehmite via an aqueous chemical reduction method. In comparison with Cu/γ-Al2O3, Cu/SiO2 and Ru/C catalyst, Cu/boehmite catalyst showed the highest conversion and selectivity of 1,2-propanediol in the hydrogenolysis of glycerol. The good conversion and selectivity are ascribed to the small size of Cu metal clusters and the Lewis acid sites of boehmite, which provides high surface concentrations of active metal sites without CC bond cleavage activity and promotes the dehydration of glycerol to acetol as the intermediate of 1,2-propanediol, respectively.  相似文献   

16.
Nanocrystalline α-Al2O3 and Ni-modified α-Al2O3 have been prepared by sol–gel and solvothermal methods and employed as supports for Pd catalysts. Regardless of the preparation method used, NiAl2O4 spinel was formed on the Ni-modified α-Al2O3 after calcination at 1150 °C. However, an addition of NiO peaks was also observed by X-ray diffraction for the solvothermal-made Ni-modified α-Al2O3 powder. Catalytic performances of the Pd catalysts supported on these nanocrystalline α-Al2O3 and Ni-modified α-Al2O3 in selective hydrogenation of acetylene were found to be superior to those of the commercial α-Al2O3 supported one. Ethylene selectivities were improved in the order: Pd/Ni-modified α-Al2O3–sol–gel > Pd/Ni-modified α-Al2O3-solvothermal ≈ Pd/α-Al2O3–sol–gel > Pd/α-Al2O3-solvothermal  Pd/α-Al2O3-commerical. As revealed by NH3 temperature program desorption studies, incorporation of Ni atoms in α-Al2O3 resulted in a significant decrease of acid sites on the alumina supports. Moreover, XPS revealed a shift of Pd 3d binding energy for Pd catalyst supported on Ni-modified α-Al2O3–sol–gel where only NiAl2O4 was formed, suggesting that the electronic properties of Pd may be modified.  相似文献   

17.
An efficient method was developed to produce highly dispersed Pd nano particles (NPs), supported on Nafion‐graphene film by electrochemical deposition at constant potential in presence of ferrous ions. The Fe2+ ions govern the size, shape and morphology of Pd NPs. The as‐prepared catalyst was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X‐ray diffraction (XRD). It was obeserved from TEM that the mean diameter of electrodeposited Pd NPs was 6.4 ± 1.3 nm with narrow diameter range from 4 to 10 nm. The electrocatalytic performance of the Pd NPs deposited on Nafion‐graphene (Nf‐G) catalyst was studied by cyclic voltametry (CV) and chronoamperometric measurements. The highly dispersed Pd NPs on Nf‐G film were obtained in presence of Fe2+ ions. This alters electrochemical active surface area and hence catalytic activity of Pd NPs. The prepared Pd/Nf‐G catalyst exhibit highest tolerance to the intermediate poisoning species (ratio If/Ib = 2.2). The as‐obtained catalyst shows an efficient electrocatalytic activity and good stability for ethanol oxidation in alkaline medium.  相似文献   

18.
Pd@SiO2 core–shell-particles were prepared by coating silica onto the surface of Pd–polyvinylpyrrolidone (PVP) colloids, according to the Stober method. These particles were characterized with SEM, TEM, nitrogen adsorption/desorption, XRD, CO chemisorption, and were used to catalyze the hydrogenation of 4-carboxybenzaldehyde (4-CBA) to p-toluic acid (PT). The maximum PT yield (around 99%) occurred at 160–175 °C, which was much lower than the temperature (250–270 °C) used in the commercial terephthalic acid refining process (with a Pd/C catalyst).  相似文献   

19.
This paper presents some important results of the studies on preparation and catalytic properties of nanodispersed Au/Al2O3 catalysts for low-temperature CO oxidation, which are carried out at the Boreskov Institute of Catalysis (BIC) starting from 2001. The catalysts with a gold loading of 1–2 wt.% were prepared via deposition of Au complexes onto different aluminas by means of various techniques (“deposition-precipitation” (DP), incipient wetness, “chemical liquid-phase grafting” (CLPG), chemical vapor deposition (CVD)). These catalysts have been characterized comparatively by a number of physical methods (XRD, TEM, diffuse reflectance UV/vis and XPS) and catalytically tested for combustion of CO impurity (1%) in wet air stream at near-ambient temperature. Using the hydroxide or chloride gold complexes capable of chemical interaction with the surface groups of alumina as the catalyst precursors (DP and incipient wetness techniques, respectively) produces the catalysts that contain metallic Au particles mainly of 2–4 nm in diameter, uniformly distributed between the external and internal surfaces of the support granules together with the surface “ionic” Au oxide species. Application of organogold precursors gives the supported Au catalysts of egg shell type which are either close by mean Au particle size to what we obtain by DP and incipient wetness techniques (CVD of (CH3)2Au(acac) vapor on highly dehydrated Al2O3 in a rotating reactor under static conditions) or contain Au crystallites of no less than 7 nm in size (CLPG method). Regardless of deposition technique, only the Cl-free Au/Al2O3 catalysts containing the small Au particles (di ≤ 5 nm) reveal the high catalytic activity toward CO oxidation under near-ambient conditions, the catalyst stability being provided by adding the water vapor into the reaction feed. The results of testing of the nanodispersed Au/Al2O3 catalysts under conditions which simulate in part removal of CO from ambient air or diesel exhaust are discussed in comparison with the data obtained for the commercial Pd and Pt catalysts under the same conditions.  相似文献   

20.
5 wt% Pd catalysts supported on platelet carbon nanofibers has been prepared by incipient wetness impregnation. Both the calcination and the reduction temperature have a significant effect on the dispersion of palladium and it was found that about 3 nm sized Pd nanoparticles can be obtained at a calcination and reduction temperature of 250 °C and 150 °C, respectively. Pd catalysts have been applied to catalyze Heck reactions of various activated and non-activated aryl substrates. The activity increased exponentially with a decrease in Pd particle size. The high surface area, mesoporous structure of carbon nanofiber and highly dispersed palladium species on carbon nanofibers makes up one of the most active and reusable heterogeneous catalysts for Heck coupling reactions. Pd nanoparticles supported on platelet CNFs appear to be an excellent catalyst due to high activity, low sensitivity towards oxygen, almost no or low issues with leaching and high stability in multi-cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号