首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Left ventricular hypertrophy with adequate wall thickness, preserved adult phenotype and extracellular matrix may be useful in the prevention of heart failure. Because activation of subtype 1 of angiotensin II (AT1) receptors is thought to be involved in the hypertrophic response of cardiomyocytes, we tested the potential of systemic AT1 blockade to modify the development of left ventricular hypertrophy due to pressure overload. Sham-operated rats and rats with ascending aorta constriction were treated with losartan (30 mg/kg/day) for 8 weeks. Left ventricular geometry, dynamics of isovolumic contractions, hydroxyproline concentration as well as myosin isozymes (marker of fetal phenotype) were assessed. Rats with aortic constriction exhibited a marked increase in left ventricular weight and the diastolic pressure-volume relationship was shifted to smaller volumes. An enlarged ventricular pressure-volume area and increased (p < 0.05) peak values of +dP/dtmax and- dP/dtmax demonstrated an enhanced overall ventricular performance. Signs of congestive heart failure were not apparent. In contrast, parameters of myocardial function (normalized length-stress area, +d delta /dtmax and -d delta /dtmax) were depressed (p < 0.05), indicating an impaired myocardial contractility. The hydroxyproline concentration remained unaltered. However, the proportion of beta-myosin heavy chains (MHC) was increased (p < 0.05). Administration of losartan decreased (p < 0.05) blood pressure and body weight in sham operated and pressure overloaded rats. By contrast, neither the concentric left ventricular hypertrophy or depressed myocardial function nor the increased beta-MHC expression were significantly altered. Thus, activation of AT1 receptors appears not to be involved in the initial expression of the fetal phenotype of pressure overloaded heart which may be responsible for the progressive functional deterioration of the hypertrophied ventricle.  相似文献   

2.
The effects of MCI-154 (6-[4-(4'-pyridyl)aminophenyl]-4,5-dihydro-3(2H)- pyridazinone hydrochloride.3H2O), a cardiotonic agent with calcium sensitizing actions, on regional contractile function and myocardial oxygen consumption (MVO2) were studied in the dog hearts with and without partial occlusion of the left anterior descending coronary artery and compared with those of dobutamine. Segment shortening by sonomicrometry, regional myocardial blood flow by microspheres and the oxygen content of coronary venous blood drawn from the ischemic left anterior descending coronary artery area were simultaneously measured. The ischemic zone segment shortening and left ventricular (LV) dP/dtmax were decreased after partial occlusion. The infusion of MCI-154 starting 20 min after ischemia improved the depressed segment shortening and LV dP/dtmax without increasing the ischemic zone MVO2 and regional myocardial blood flow. In the nonischemic hearts, MCI-154 did not increase MVO2 and coronary blood flow despite the augmentation of myocardial contractility. MCI-154 decreased LV end-diastolic pressure and systemic blood pressure. On the other hand, dobutamine failed to increase the ischemic zone segment shortening, but the drug increased MVO2, coronary blood flow and LV dP/dtmax in both ischemic and nonischemic hearts. These results indicate that MCI-154 alleviates the ischemic contractile failure without increasing myocardial oxygen demand. Thus, MCI-154 may be useful in the management of heart failure with reduced coronary reserve.  相似文献   

3.
BACKGROUND: The effects of desflurane, sevoflurane, and isoflurane on left ventricular-arterial coupling and mechanical efficiency were examined and compared in acutely instrumented dogs. METHODS: Twenty-four open-chest, barbiturate-anesthetized dogs were instrumented for measurement of aortic and left ventricular (LV) pressure (micromanometer-tipped catheter), dP/dtmax, and LV volume (conductance catheter). Myocardial contractility was assessed with the end-systolic pressure-volume relation (Ees) and preload recruitable stroke work (Msw) generated from a series of LV pressure-volume diagrams. Left ventricular-arterial coupling and mechanical efficiency were determined by the ratio of Ees to effective arterial elastance (Ea; the ratio of end-systolic arterial pressure to stroke volume) and the ratio of stroke work (SW) to pressure-volume area (PVA), respectively. RESULTS: Desflurane, sevoflurane, and isoflurane reduced heart rate, mean arterial pressure, and left ventricular systolic pressure. All three anesthetics caused similar decreases in myocardial contractility and left ventricular afterload, as indicated by reductions in Ees, Msw, and dP/dtmax and Ea, respectively. Despite causing simultaneous declines in Ees and Ea, desflurane decreased Ees/Ea (1.02 +/- 0.16 during control to 0.62 +/- 0.14 at 1.2 minimum alveolar concentration) and SW/PVA (0.51 +/- 0.04 during control to 0.43 +/- 0.05 at 1.2 minimum alveolar concentration). Similar results were observed with sevoflurane and isoflurane. CONCLUSIONS: The present findings indicate that volatile anesthetics preserve optimum left ventricular-arterial coupling and efficiency at low anesthetic concentrations (< 0.9 minimum alveolar concentration); however, mechanical matching of energy transfer from the left ventricle to the arterial circulation degenerates at higher end-tidal concentrations. These detrimental alterations in left ventricular-arterial coupling produced by desflurane, sevoflurane, and isoflurane contribute to reductions in overall cardiac performance observed with these agents in vivo.  相似文献   

4.
The inotropic and chronotropic responses to dobutamine (DBA) and isoprenaline (5ISO) were examined in eight chloralose anaesthetised dogs. Following acute cardiac denervation, heart rate (HR) and contractility (dP/dtmax), measured at a fixed paced atrial rate, were recorded during intravenous infusion of incremental doses of DBA and ISO. Both DBA and ISO elicited increases in HR and dP/dtmax. The increases in dP/dtmax for a one beat per minute increase in HR was 102.0 +/- 10.6 mm Hg/s (1 mm Hg (0 degree C) = 133.322 Pa), during DBA infusion, and 61.5 +/- 8.4 mm Hg/s during ISO infusion. It appeared that the relatively greater inotropic effect of DBA in comparison with ISO was the result of an augmentation of its inotropic activity. DBA infusion was accompanied by a significant increase in mean aortic pressure at all doses examined. An increase in afterload may account for part of the increased inotropic responses to DBA.  相似文献   

5.
BACKGROUND: Initial cardiovascular responses during sepsis are characterized by hyperdynamic circulation. Although studies have shown that a novel potent vasodilatory peptide, adrenomedullin (ADM), is up-regulated under such conditions, it remains unknown whether ADM is responsible for initiating the hyperdynamic response. OBJECTIVE: To determine whether increased ADM release during early sepsis plays any major role in producing hyperdynamic circulation. DESIGN, INTERVENTION, AND MAIN OUTCOME MEASURE: Synthetic rat ADM (8.5 microg/kg of body weight) was infused intravenously in normal rats for 15 minutes at a constant rate. Cardiac output, stroke volume, and microvascular blood flow in various organs were determined immediately as well as 30 minutes after ADM infusion. At 30 minutes after infusion, plasma ADM level was also measured. In additional groups, rats were subjected to sepsis by cecal ligation and puncture. At 1.5 hours after cecal ligation and puncture, specific anti-rat ADM antibodies were infused, which completely neutralized the circulating ADM. Various hemodynamic variables were measured 5 hours after cecal ligation and puncture (ie, the early stage of sepsis). RESULTS: Cardiac output, stroke volume, and microvascular blood flow in the liver, small intestine, kidney, and spleen increased, and total peripheral resistance decreased 0 and 30 minutes after ADM infusion. In addition, plasma levels of ADM increased from the preinfusion level of 92.7+/-5.3 to 691.1+/-28.2 pg/mL 30 minutes after ADM infusion, which was similar to ADM levels observed during early sepsis. Moreover, 5 hours after the onset of sepsis, cardiac output, stroke volume, and microvascular blood flow in various organs increased and total peripheral resistance decreased. Administration of anti-ADM antibodies, however, prevented the occurrence of the hyperdynamic response. CONCLUSIONS: The results suggest that increased ADM production and/or release plays a major role in producing hyperdynamic responses during early sepsis. Since our previous studies have shown that vascular responsiveness to ADM decreases in late sepsis, maintenance of ADM vascular responsiveness by pharmacological agents during the course of sepsis may prevent transition from the hyperdynamic to the hypodynamic state.  相似文献   

6.
10 patients with their first AMI were studied within the first 48 hours and again after 3 weeks. Central and peripheral haemodynamics (CI, SV, SW, TPR) were examined, including indices of contractility (dp/dtmax) and wall stiffness (deltaP/deltaV, relation deltaP/deltaV to P) of the left ventricle. In the early phase CI and SW, as well as LV dp/dtmax were depressed in accordance with symptoms of LV failure. deltaP/deltaV was increased. Elevation of LVEDP correlated well with ventricular gallop rhythm, but less consistently with LV functional disturbance. During convalescence CI increased uniformly, both in digitalized and non-digitalized individuals. In contrast heart rate, aortic pressure, LVEDP and dp/dtmax remained unchanged. The increase of CI, SV and SW was accompanied by a fall of TPR and deltaP/deltaV. LV wall stiffness was still elevated above normal after 3 weeks. The improvement of cardiac pumping during infarct convalescence may have been effected through a fall of TPR and LV wall stiffness. Recovery of depressed contractile performance was generally not observed, and does therefore not seem to contribute to recuperation.  相似文献   

7.
1. The role of the renin-angiotensin system in the regulation of myocardial contractility is still debated. In order to investigate whether renin inhibition affects myocardial contractility and whether this action depends on intracardiac rather than circulating angiotensin II, the regional myocardial effects of systemic (i.v.) and intracoronary (i.c.) infusions of the renin inhibitor remikiren, were compared and related to the effects on systemic haemodynamics and circulating angiotensin II in open-chest anaesthetized pigs (25-30 kg). The specificity of the remikiren-induced effects was tested (1) by studying its i.c. effects after administration of the AT1-receptor antagonist L-158,809 and (2) by measuring its effects on contractile force of porcine isolated cardiac trabeculae. 2. Consecutive 10 min i.v. infusions of remikiren were given at 2, 5, 10 and 20 mg min-1. Mean arterial pressure (MAP), cardiac output (CO), heart rate (HR), systemic vascular resistance (SVR), myocardial oxygen consumption (MVO2) and left ventricular (LV) dP/dtmax were not affected by remikiren at 2 and 5 mg min-1, and were lowered at higher doses. At the highest dose, MAP decreased by 48%, CO by 13%, HR by 14%, SVR by 40%, MVO2 by 28% and LV dp/dtmax by 52% (mean values; P < 0.05 for difference from baseline, n = 5). The decrease in MVO2 was accompanied by a decrease in myocardial work (MAP x CO), but the larger decline in work (55% vs. 28%; P < 0.05) implies a reduced myocardial efficiency ((MAP x CO)/MVO2). 3. Consecutive 10 min i.c. infusions of remikiren were given at 0.2, 0.5, 1, 2, 5 and 10 mg min-1. MAP, CO, MVO2 and LV dP/dtmax were not affected by remikiren at 0.2, 0.5 and 1 mg min-1, and were reduced at higher doses. At the highest dose, MAP decreased by 31%, CO by 26%, MVO2 by 46% and LV dP/dtmax by 43% (mean values; P < 0.05 for difference from baseline, n = 6). HR and SVR did not change at any dose. 4. Thirty minutes after a 10 min i.v. infusion of the AT1 receptor antagonist, L-158,809 at 1 mg min-1, consecutive 10 min i.c. infusions (n = 5) of remikiren at 2, 5 and 10 mg min-1 no longer affected CO and MVO2, and decreased LV dP/dtmax by maximally 27% (P < 0.05) and MAP by 14% (P < 0.05), which was less than without AT1-receptor blockade (P < 0.05). HR and SVR remained unaffected. 5. Plasma renin activity and angiotensin I and II were reduced to levels at or below the detection limit at doses of remikiren that were not high enough to affect systemic haemodynamics or regional myocardial function, both after i.v. and i.c. infusion. 6. Remikiren (10(-10) to 10(-4) M) did not affect contractile force of porcine isolated cardiac trabeculae precontracted with noradrenaline. In trabeculae that were not precontracted no decrease in baseline contractility was observed with remikiren in concentrations up to 10(-5) M, whereas at 10(-4) M baseline contractility decreased by 19% (P < 0.05). 7. Results show that with remikiren i.v., at the doses we used, blood pressure was lowered primarily by vasodilation and with remikiren i.c. by cardiac depression. The blood levels of remikiren required for its vasodilator action are lower than the levels affecting cardiac contractile function. A decrease in circulating angiotensin II does not appear to be the sole explanation for these haemodynamic responses. Data support the contention that myocardial contractility is increased by renin-dependent angiotensin II formation in the heart.  相似文献   

8.
OBJECTIVE: Calcium channel antagonists (CCA) have been proposed for the prevention of cardiac events after myocardial infarction (MI). Mibefradil is a CCA featuring a selective blockade of T-type Ca2(+)-channels. The aim of the study was to characterize the effects of mibefradil on haemodynamic and morphological parameters in a model of postMI chronic heart failure and to establish the "therapeutic window" for the start of therapy. METHODS: MI was induced by permanent ligation of the left coronary artery in male normotensive Wistar rats. Animals were assigned to placebo- or mibefradil-treated (10 mg/kg/day p.o.) groups as follows: (1) sham operation; (2) MI placebo treatment; (3) 7 days preMI start of treatment; (4) 3 h postMI start of treatment; (5) 24 h postMI start of treatment; (6) 3 days postMI start of treatment; (7) 7 days postMI start of treatment. Treatment was continued for 6 weeks postMI. At this time point, mean arterial blood pressure (MAP), heart rate, left ventricular enddiastolic pressure (LVEDP) and contraction force (dP/dtmax) were measured in conscious rats at baseline and after methoxamine (MEX; 0.5-1.0 mg/h i.v.) stimulation to increase afterload. The hearts were subjected to histological determination of infarct size (IS), infarct length (IL), noninfarcted length (NL), left ventricular circumference (LVC), inner LV-diameter (LVD) and septal thickness (ST). RESULTS: Six weeks after MI, MAP was lowered, LVEDP increased and dP/dtmax reduced. Mibefradil treatment increased basal MAP in groups 3-5 compared to the placebo-treated MI group. Under mibefradil, LVEDP was reduced at baseline in groups 3-6 and, after MEX, in all groups. dP/dtmax was increased in groups 3-4 at baseline and after MEX. In the placebo-treated MI group, the infarcted area was 39% of the LV and heart weight, LVD and LVC were increased. Heart weights of mibefradil-treated rats (groups 3-6) did not differ from those of the placebo-treated group. Early onset of treatment with mibefradil reduced IS and IL and increased NL in groups 3-4. LVD and LVC were decreased in group 3 only. ST was increased in groups 3-5. CONCLUSION: Chronic treatment with mibefradil exerts beneficial actions on cardiac structure and performance in postMI cardiac failure in rats, especially when the onset of treatment is either prior to or within hours after the acute ischemic event.  相似文献   

9.
The most important clinical manifestation of myocarditis is congestive heart failure. The precise mechanisms of heart failure during myocarditis have not been elucidated because no animal model that would permit in vivo study of hemodynamics in severe active myocarditis has been available. We monitored hemodynamics and left ventricular function in a rat model of experimental autoimmune myocarditis to determine if this model could be useful for the study of in vivo hemodynamics in severe active myocarditis. Lewis rats were immunized with human cardiac myosin suspended in complete Freund's adjuvant. Baseline hemodynamics were measured using an ultraminiature catheter pressure transducer via the right internal carotid artery, 4 weeks after immunization in one group of rats (acute phase) and 3 months after immunization in another group (chronic phase). Untreated rats served as the control group. Hemodynamic measurements were also obtained after infusion of dobutamine in the acute-phase and chronic-phase groups. The heart weight-to-body weight ratios were significantly higher in both the acute-phase group and the chronic-phase group compared with normal control rats. The baseline left ventricular systolic pressure was significantly lower in the chronic phase group than in the control group. Peak dP/dt and peak -dP/dt were significantly lower in both the acute-phase group and the chronic-phase group compared with the control group. Dobutamine significantly increased left ventricular systolic pressure, peak dP/dt, and peak -dP/dt in the chronic-phase group but caused only minor changes in hemodynamic variables in the acute-phase group. In vivo measurements of hemodynamic variables indicated the presence of left ventricular dysfunction in rats with experimental autoimmune myocarditis. This animal model may be useful for the study of both acute heart failure related to acute myocarditis and chronic heart failure due to diffuse myocardial fibrosis.  相似文献   

10.
An improved, isolated, left ventricular-ejecting, murine heart model is described and evaluated. Special attention was paid to the design and impedance characteristics of the artificial aortic outflow tract and perfusate composition, which contained glucose (10 mM plus insulin) and pyruvate (1.5 mM) as substrates. Temperature of the isolated perfused hearts was maintained at 38.5 degrees C. During antegrade perfusion (preload 10 mm Hg, afterload 50 mm Hg, 2.5 mM Ca2+) proper design of the aortic outflow tract provided baseline values for cardiac output (CO), left ventricular developed pressure (LVDP) and the maximum first derivative of left ventricular pressure (LV dP/dtmax) of 11.1+/-1.7 ml min-1, 83+/-5 mm Hg and 6283+/-552 mm Hg s-1, respectively, resembling findings in the intact mouse. During 100 min normoxic antegrade perfusion CO declined non-significantly by less than 10%. Varying pre- and afterloads resulted in typical Frank-Starling relationships with maximal CO values of 18.6+/-1.8 ml min-1 at pre- and afterload pressures of 25 and 50 mm Hg, respectively. Left ventricular function curves were constructed at free [Ca2+] of 1.5 and 2.5 mM in the perfusion medium. Significantly higher values for CO, LVDP and LV dP/dtmax and LV dP/dtmin were obtained at 2.5 mM Ca2+ at all loading conditions investigated. Phosphocreatine and creatine levels remained stable throughout the perfusion period. Despite a small but significant decline in tissue ATP content, the sum of adenine nucleotides did not change during the normoxic perfusion period. The tissue content of glycogen increased significantly.  相似文献   

11.
OBJECTIVES: The aim of the present study was to test two hypotheses: (1) the momentum of the blood flowing out of the left ventricle toward the aorta (inertia force) plays an important role in the initiation of decay and the maximum rate of decay (peak (-dP/dt)) of left ventricular pressure (P); (2) a normal heart itself generates the inertia force which enhances its function. METHODS: The contribution of the inertia force to (-dP/dt) was theoretically given as rho c alpha, where rho is the blood density, c the pulse wave velocity, and alpha the deceleration rate of aortic blood flow. The correlations of peak (-dP/dt) with rho c alpha and with the time constant (tau) of the pressure decay during isovolumic relaxation, which was considered to represent myocardial relaxation characteristics, were compared in seven dogs. We developed a method of grading the strength of the inertia force, using the phase loop of left ventricular pressure (dP/dt vs. P relation). The method was applied to the records of 25 patients with ischemic heart disease, from which high fidelity left ventricular pressure recordings were available. RESULTS: The correlation of peak (-dP/dt) with rho c alpha was much higher than with tau (0.75 vs. -0.46). 16 of the 25 patients showed evidence of the inertia force. However, other patients showed no inertia force. The strength of the inertia force showed a significant (P < 0.05) correlation with left ventricular end-diastolic pressure (r = -0.46), cardiac index (r = 0.62), stroke volume index (r = 0.69), ejection fraction (r = 0.46), and peak (-dP/dt) (r = 0.56). CONCLUSION: The inertia force of late systolic aortic flow contributed to ventricular relaxation in the normal heart.  相似文献   

12.
The effects on cardiac function of slowed frequency produced by a sinus node inhibitor (zatebradine, or UL-FS 49) were studied in the conscious rabbit under control conditions (n = 16) and after heart failure was produced by rapid atrial pacing for an average of 18.5 days (n = 8). Echocardiography was used to verify severe left ventricular (LV) dysfunction, and high-fidelity micromanometry and cardiac output measurements (Doppler echo) were performed. Echocardiographic fractional shortening was 40.3 +/- 4.1 % (SD) in controls; in heart failure it was 18.0 +/- 1.6 %, and the LV was enlarged. In controls, as heart rate (HR) was decreased from 279 beats per minute (bpm) by incremental doses of zatebradine (up to 0.75 mg/kg), maximal changes occurred when the heart reached 218 bpm with a maximum decrease of the first derivative of LV pressure (LV dP/dtmax) of 15.9 %; LV enddiastolic pressure (EDP) increased from 4.3 to 8.4 mmHg along with a significant decrease in cardiac index (CI) of 15.2 %, while LV systolic pressure (SP) was stable. In heart failure, LV dP/dtmax and CI were markedly reduced compared to controls and with reduction of HR from 257 to 221 bpm LV dP/dtmax was unchanged, LVEDP increased slightly (NS), LVSP was unchanged and CI fell by 13.5 % at the highest dose. In subgroups (control n = 9, failure n = 6), in order to eliminate the hemodynamic effects of cardiac slowing by zatebradine the sinus rate present before zatebradine was matched by atrial pacing; this procedure eliminated all hemodynamic abnormalities accompanying cardiac slowing in both groups. In conclusion, slowed HR due to a sinus node inhibitor was well tolerated in severe heart failure, and all negative hemodynamic responses in both controls and in heart failure were due entirely to a negative forcefrequency effect, without a direct depressant action of zatebradine on the myocardium.  相似文献   

13.
The effect of 1-5 bar O2 on left ventricular pressure (LVP), maximal velocity of LVP rise (+dP/dt) and fall (-dP/dt), systolic arterial pressure (APsys), pulse pressure (delta AP), heart rate (HR), and respiratory frequency (RF) was studied in anesthetized and conscious rats. At 1 bar O2, all blood pressure parameters increased significantly (9-56%) in both groups of rats, while RF fell (11-12%). HR fell only in conscious rats, while arrhythmias occurred in both groups. Compression to 5 bar O2 induced a significant further increase in all blood pressure parameters. HR fell further in the conscious rats. Arrhythmias were observed in increasing number during compression and at 5 bar O2. Elevation in estimated oxygen-consumption of the heart was found both during compression and at 5 bar O2. We conclude that O2 exposure markedly stimulates the myocardium by elevating the LVP, +dP/dt, and -dP/dt, thus elevating APsys and delta AP. Arrhythmias developed in both groups, while bradycardia occurred only in conscious rats.  相似文献   

14.
The present study was designed to evaluate the effect of cyclosporin A in a rat model of myocardial ischaemia reperfusion injury (MI/R). Anaesthetized rats were subjected to total occlusion (20 min) of the left main coronary artery followed by 5 h reperfusion (MI/R). Sham myocardial ischaemia-reperfusion rats (Sham MI/R) were used as controls. Myocardial necrosis, myocardial myeloperoxidase activity (MPO), serum creatinine phosphokinase activity (CPK), serum tumor necrosis factor (TNF-alpha), cardiac mRNA for TNF-alpha, cardiac intercellular adhesion molecule-1 (ICAM-1) immunostaining and myocardial contractility (left ventricle dP/dtmax) were evaluated. Myocardial ischaemia plus reperfusion in untreated rats produced marked myocardial necrosis, increased serum CPK activity and myeloperoxidase activity (a marker of leukocyte accumulation) both in the area-at-risk and in the necrotic area, reduced myocardial contractility and induced a marked increase in the serum levels of the TNF-alpha. Furthermore increased cardiac mRNA for TNF-alpha was measurable within 10 to 20 min of left main coronary artery occlusion in the area-at-risk and increased levels were generally sustained for 0.5 h. Finally, myocardial ischaemia-reperfusion injury increased ICAM-1 staining in the myocardium. Administration of cyclosporin A (0.25, 0.5 and 1 mg/kg as an i.v. infusion 5 min after coronary artery occlusion) lowered myocardial necrosis and myeloperoxidase activity in the area-at-risk and in the necrotic area, decreased serum CPK activity, increased myocardial contractility, reduced serum levels of TNF-alpha and the cardiac cytokine mRNA levels, and blunted ICAM-1 immunostaining in the injured myocardium. The data suggest that cyclosporin A suppresses leukocyte accumulation and protects against myocardial ischaemia-reperfusion injury.  相似文献   

15.
This study was aimed at elucidating whether ventricular hypothermia-induced dysfunction persisting after rewarming the unsupported in situ dog heart could be characterized as a systolic, diastolic, or combined disturbance. Core temperature of 8 mongrel dogs was gradually lowered to 25 degreesC and returned to 37 degreesC over a period of 328 min. Systolic function was described by maximum rate of increase in left ventricular (LV) pressure (dP/dtmax), relative segment shortening (SS%), stroke volume (SV), and the load-independent contractility index, preload recruitable stroke work (PRSW). Diastolic function was described by the isovolumic relaxation constant (tau) and the LV wall stiffness constant (Kp). Compared with prehypothermic control, a significant decrease in LV functional variables was measured at 25 degreesC: dP/dtmax 2,180 +/- 158 vs. 760 +/- 78 mmHg/s, SS% 20.1 +/- 1.2 vs. 13.3 +/- 1.0%, SV 11.7 +/- 0.7 vs. 8.5 +/- 0.7 ml, PRSW 90.5 +/- 7.7 vs. 29.1 +/- 5.9 J/m. 10(-2), Kp 0.78 +/- 0.10 vs. 0.28 +/- 0.03 mm-1, and tau 78.5 +/- 3.7 vs. 25.8 +/- 1.6 ms. After rewarming, the significant depression of LV systolic variables observed at 25 degreesC persisted: dP/dtmax 1,241 +/- 108 mmHg/s, SS% 10.2 +/- 0.8 J, SV 7.3 +/- 0.4 ml, and PRSW 52.1 +/- 3.6 m. 10(-2), whereas the diastolic values of Kp and tau returned to control. Thus hypothermia induced a significant depression of both systolic and diastolic LV variables. After rewarming, diastolic LV function was restored, in contrast to the persistently depressed LV systolic function. These observations indicate that cooling induces more long-lasting effects on the excitation-contraction coupling and the actin-myosin interaction than on sarcoplasmic reticulum Ca2+ trapping dysfunction or interstitial fluid content, making posthypothermic LV dysfunction a systolic perturbation.  相似文献   

16.
This study examined the effects of cardiomyoplasty with vascular delay on canine normal and depressed left ventricular (LV) function. To improve viability of the latissimus dorsi muscle (LDM), vascular delay was performed 2 weeks before cardiomyoplasty in 10 mongrel dogs. Two weeks after cardiomyoplasty, LV function was evaluated by simultaneously measuring LV and aortic pressure, and aortic flow. The LDM was stimulated at a ratio of 1:4-1:7 synchronously with ventricular systole. Microspheres (90 mu) were sequentially injected into the left coronary artery to depress LV function. Data were acquired and analyzed on a beat to beat basis. Results were as follows: LDM stimulation significantly augmented LV systolic pressure (LVSP) from 138 +/- 2 to 161 +/- 2* mmHg, the peak rate of change of LV pressure (+dP/dt) from 1888 +/- 46 to 2584 +/- 43* mmHg/sec, aortic systolic pressure (AoSP) from 140 +/- 2 to 159 +/- 2* mmHg, stroke volume (SV) from 11.2 +/- 0.3 to 13.3 +/- 0.3* ml, stroke work (SW) from 19 +/- 1 to 26 +/- 1* gm.m, peak aortic flow (P Qa) from 5542 +/- 142 to 7190 +/- 161* ml/min, and decreased -dP/dt from -1683 +/- 31 to -1689 +/- 49* mmHg/sec (* = p < 0.05). Microsphere injections depressed LV function, but did not affect the magnitude of the net changes between stimulated and nonstimulated beats. However, the percent changes significantly increased. Preconditioning of LDM with vascular delay augments cardiac function in LDM assisted beats. This improved performance was present in both normal as well as depressed LV function groups. Thus, investigations of cardiomyoplasty may not necessarily require a model of severe myocardial dysfunction. Vascular delay offers an important preconditioning method of LDM to augment cardiac function in cardiomyoplasty.  相似文献   

17.
Conflicting results have been reported as to the extent that cardiovascular function can be reestablished after rewarming from hypothermia. We measured hemodynamic function, myocardial metabolism and tissue water content in dogs core-cooled to 25 degrees C and later rewarmed. At 25 degrees C left ventricular (LV) systolic pressure (LVSP) was 54% +/- 4%, maximum rate of LV pressure rise (LV dP/dtmax) 44% +/- 5%, aortic pressure (AOP) 50% +/- 6%, heart rate (HR) 40% +/- 0%, cardiac output (CO) 37% +/- 5%, myocardial blood flow (MBF) 34% +/- 5%, and myocardial oxygen consumption (MVO2) 8% +/- 1%, compared to precooling. Stroke volume (SV) and LV end-diastolic pressure (LVEDP) were unchanged. As normothermia (37 degrees C) was reestablished, the depression of cardiac function and myocardial metabolism remained the same as that at 25 degrees C: LVSP 71% +/- 6%, LV dP/dtmax 73% +/- 7%, SV 60% +/- 9%, AOP 70% +/- 6%, CO 57% +/- 9%, MBF 53% +/- 8%, and MVO2 44% +/- 8% HR, in contrast, recovered to precooling values. The arterial concentrations of glucose and free fatty acids (FFA) did not change significantly during the experimental period, whereas an increase in lactate of nonmyocardial origin appeared after rewarming. Increased myocardial contents of creatine phosphate and water were found during both hypothermia and rewarming. The present study demonstrates a persistent depression of cardiac function after hypothermia and rewarming in spite of adequate energy stores. Thus, a direct influence on myocardial contractile function by the cooling and rewarming process is suggested.  相似文献   

18.
The effects of methyl palmitate (MP), a known inhibitor of Kupffer cells, were studied in a model of polymicrobial sepsis induced in CD-1 mice by cecal ligation and puncture (CLP). The inhibition of Kupffer cells by pretreatment with MP was shown by the reduced phagocytosis, the production of tumor necrosis factor (TNF) and interleukin-6 (IL-6) after lipopolysaccharide (LPS) challenge. The reduced activation of Kupffer cells resulted in lower levels of inflammatory products after CLP. TNF and IL-6 were significantly reduced in serum 2 h and 24 h respectively after CLP, interleukin-1 beta (IL-1 beta) was reduced in liver 4 h after CLP, nitric oxide (NO) and serum amyloid A (SAA) were significantly reduced 8 and 24 h respectively after CLP. Liver toxicity was significantly reduced in MP-treated mice and survival was significantly prolonged at all intervals, reaching 45% after six to ten days compared with 3% in control mice. These findings suggest that Kupffer cells play an important role in liver damage and survival in sepsis.  相似文献   

19.
OBJECTIVE: In isolated cardiac preparations of non-failing hearts from different species, including man, there is a positive force-frequency relation which is reversed into a negative relation in preparation from failing hearts. Whether or not such relations between ventricular function and heart rate hold true in the in situ heart is not clear at present. Mechanical restitution and postextrasystolic potentiation might serve as alternative measures of excitation-contraction coupling. METHODS: Eleven dogs were instrumented with a left ventricular micromanometer, ultrasonic crystals for the measurement of regional wall thickness, two hydraulic occluders around the descending aorta and the inferior caval vein, and left atrial and ventricular pacing leads with a subcutaneous pacemaker. Left ventricular dP/dtmax, as an isovolumic phase index, and systolic wall thickening, as an ejection phase index, were plotted versus heart rate, and heart rate was increased by left atrial pacing from rest to 200 min-1 in increments of 25 min-1. In a subset of dogs, left ventricular filling was controlled and the frequency range expanded by the bradycardic agent UL-FS 49. Measurements were performed in the presence and absence of autonomic blockade (hexamethonium, atropine). Mechanical restitution and postextrasystolic potentiation were determined as normalized dP/dtmax and systolic wall thickening, respectively, of the extra- and postextrasystolic beat versus defined variations of the extrasystolic time interval (250-550 ms). Following control studies, heart failure was induced by rapid left ventricular pacing at 250 min-1 for 20 days +/- 6 (SD) and measurements repeated. Isolated left ventricular trabeculae from non-failing and failing hearts were studied during stimulation at 0.2-4 Hz. RESULTS: Only with filling control and in the absence of autonomic blockade, was there a slightly positive relation between dP/dtmax and heart rate in the control state. Otherwise, the relation of dP/dtmax to heart rate was flat both in the control state and in heart failure. The relation between systolic wall thickening and heart rate in the control state was negative, unless filling was controlled, and it was flat in heart failure. In contrast, the time constants of mechanical restitution and postextrasystolic potentiation were increased significantly with heart failure from 91 +/- 25 (SD) to 164 +/- 13 ms and from 107 +/- 18 to 156 +/- 4 ms, respectively, for dP/dtmax and from 76 +/- 22 to 162 +/- 10 ms and from 101 +/- 17 to 160 +/- 17 ms, respectively, for systolic wall thickening. These time constants were, however, insensitive to UL-FS 49 and autonomic blockade. There was a negative force-frequency relation in left ventricular trabeculae from non-failing hearts at higher calcium concentrations, where it was flat in trabeculae from failing hearts. CONCLUSION: Time constants of mechanical restitution and postextrasystolic potentiation are more sensitive than the steady state relation of ventricular function and heart rate to characterize the impairment of excitation-contraction coupling in heart failure.  相似文献   

20.
Nitric oxide has been shown to decrease myocardial contractility and O2 consumption. This study was designed to evaluate the hypothesis that nitric oxide-mediated increases in cyclic GMP require elevated cyclic AMP to produce cardiac depression. Using isolated, Langendorff-perfused rat hearts, we determined the effects of intracoronary nitroprusside (NP, 1 and 10 mM) in the absence and presence of isoproterenol (ISO, 10(-8) M) on cardiac function, O2 consumption, cyclic GMP and cyclic AMP. ISO, with and without NP, increased cyclic AMP (from 287 +/- 21 to 477 +/- 33 pmol/g) without altering cyclic GMP. Left-ventricular pressure increased from 97 +/- 12 to 178 +/- 9 mm Hg and dP/dtmax from 1,786 +/- 275 to 4,049 +/- 354 mm Hg/s. NP increased cyclic GMP (from 4 to 30 pmol/g) in both the absence and presence of ISO, but NP did not alter cyclic AMP. Without ISO, NP insignificantly altered left-ventricular pressure; however, in the presence of ISO, NP significantly decreased left-ventricular pressure by -25 +/- 4 mm Hg and decreased dP/dtmax by -619 +/- 142 mm Hg/s. Isoproterenol increased O2 consumption, but the changes with NP were not significant. When this study was repeated in the presence of LY83583, a guanylate cyclase inhibitor, NP still produced cardiac depression in the presence of ISO. Therefore, cardiodepressant effects of NP were only observed against a background of inotropic stimulation with ISO. However, effects of NP on contractility were unrelated to increases in cyclic GMP or cyclic GMP-induced changes in cyclic AMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号