首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Originally discovered in the bacteriophage Mu DNA inversion system gin, Fis (Factor for Inversion Stimulation) regulates many genetic systems. To determine the base frequency conservation required for Fis to locate its binding sites, we collected a set of 60 experimentally defined wild-type Fis DNA binding sequences. The sequence logo for Fis binding sites showed the significance and likely kinds of base contacts, and these are consistent with available experimental data. Scanning with an information theory based weight matrix within fis, nrd, tgt/sec and gin revealed Fis sites not previously identified, but for which there are published footprinting and biochemical data. DNA mobility shift experiments showed that a site predicted to be 11 bases from the proximal Salmonella typhimurium hin site and a site predicted to be 7 bases from the proximal P1 cin site are bound by Fis in vitro. Two predicted sites separated by 11 bp found within the nrd promoter region, and one in the tgt/sec promoter, were also confirmed by gel shift analysis. A sequence in aldB previously reported to be a Fis site, for which information theory predicts no site, did not shift. These results demonstrate that information analysis is useful for predicting Fis DNA binding.  相似文献   

2.
The Hin DNA invertase becomes catalytically activated when assembled in an invertasome complex containing two Fis dimers bound to an enhancer segment. The region of Fis responsible for transactivation of Hin contains a mobile beta-hairpin arm that extends from each dimer subunit. We show here that whereas both Fis dimers must be capable of activating Hin, Fis heterodimers that have only one functional activating beta-arm are sufficient to form catalytically competent invertasomes. Analysis of homodimer and heterodimer mixes of different Hin mutants suggests that Fis must activate each subunit of the two Hin dimers that participate in catalysis. These experiments also indicate that all four Hin subunits must be coordinately activated prior to initiation of the first chemical step of the reaction and that the process of activation is independent of the catalytic steps of recombination. We propose a molecular model for the invertasome structure that is consistent with current information on protein-DNA structures and the topology of the DNA strands within the recombination complex. In this model, a single Fis activation arm could contact amino acids from both Hin subunits at the dimer interface to induce a conformational change that coordinately positions the active sites close to the scissile phosphodiester bonds.  相似文献   

3.
4.
The conversion from an alpha-helix to a beta-strand has received extensive attention since this structural change may induce many amyloidogenic proteins to self-assemble into fibrils and cause fatal diseases. Here we report the conversion of a peptide segment from a beta-strand to an alpha-helix by a single-site mutation as observed in the crystal structure of Fis mutant Pro26Ala determined at 2.0 A resolution. Pro26 in Fis occurs at the point where a flexible extended beta-hairpin arm leaves the core structure. Thus it can be classified as a "hinge proline" located at the C-terminal end of the beta2-strand and the N-terminal cap of the A alpha-helix. The replacement of Pro26 to alanine extends the A alpha-helix for two additional turns in one of the dimeric subunits; therefore, the structure of the peptide from residues 22 to 26 is converted from a beta-strand to an alpha-helix. This result confirms the structural importance of the proline residue located at the hinge region and may explain the mutant's reduced ability to activate Hin-catalyzed DNA inversion. The peptide (residues 20 to 26) in the second monomer subunit presumably retains its beta-strand conformation in the crystal; therefore, this peptide shows a "chameleon-like" character since it can adopt either an alpha-helix or a beta-strand structure in different environments. The structure of Pro26Ala provides an additional example where not only the protein sequence, but also non-local interactions determine the secondary structure of proteins.  相似文献   

5.
6.
7.
The Hin recombinase catalyzes a site-specific recombination reaction that results in the reversible inversion of a 1-kbp segment of the Salmonella chromosome. The DNA inversion reaction catalyzed by the Salmonella Hin recombinase is a dynamic process proceeding through many intermediate stages, requiring multiple DNA sites and the Fis accessory protein. Biochemical analysis of this reaction has identified intermediate steps in the inversion reaction but has not yet revealed the process by which transition from one step to another occurs. Because transition from one reaction step to another proceeds through interactions between specific amino acids, and between amino acids and DNA bases, it is possible to study these transitions through mutational analysis of the proteins involved. We isolated a large number of mutants in the Hin recombinase that failed to carry out the DNA exchange reaction. We generated genetic tools that allowed the assignment of these mutants to specific transition steps in the recombination reaction. This genetic analysis, combined with further biochemical analysis, allowed us to define contributions by specific amino acids to individual steps in the DNA inversion reaction. Evidence is also presented in support of a model that Fis protein enhances the binding of Hin to the hixR recombination site. These studies identified regions within the Hin recombinase involved in specific transition steps of the reaction and provided new insights into the molecular details of the reaction mechanism.  相似文献   

8.
Fis protein participates in the normal control of chromosomal replication in Escherichia coli. However, the mechanism by which it executes its effect is largely unknown. We demonstrate an inhibitory influence of purified Fis protein on replication from oriC in vitro. Fis inhibits DNA synthesis equally well in replication systems either dependent upon or independent of RNA polymerase, even when the latter is stimulated by the presence of HU or IHF. The extent of inhibition by Fis is modulated by the concentrations of DnaA protein and RNA polymerase; the more limiting the amounts of these, the more severe the inhibition by Fis. Thus, the level of inhibition seems to depend on the ease with which the open complex can be formed. Fis-mediated inhibition of DNA replication does not depend on a functional primary Fis binding site between DnaA boxes R2 and R3 in oriC, as mutations that cause reduced binding of Fis to this site do not affect the degree of inhibition. The data presented suggest that Fis prevents formation of an initiation-proficient structure at oriC by forming an alternative, initiation-preventive complex. This indicates a negative role for Fis in the regulation of replication initiation.  相似文献   

9.
10.
11.
12.
Hin recombinase requires negatively supercoiled DNA for an efficient inversion. We have generated positively supercoiled plasmid DNA using reverse gyrase from Sulfolobus shibatae and subjected it to the Hin-mediated inversion reaction. Both Hin and Fis showed the same DNA binding activity regardless of the superhelical handedness of the substrate plasmid. However, inversion activity on positively supercoiled DNA was less than 1% of negatively supercoiled DNA. Assays designed to probe steps in inversion, showed that on positively supercoiled DNA, Hin was able to cleave the recombination sites with the same efficiency shown on negatively supercoiled DNA but was not able to exchange the cleaved DNA. Based on the theoretical differences between positive and negative supercoiling, our data may suggest that unwinding of the double helix at recombination sites is needed after DNA cleavage for strand exchange to occur.  相似文献   

13.
The influence of proline on bending of the alpha-helix was investigated by replacement of the proline residue located in the middle of the long alpha-helix of the Fis protein with alanine, serine, or leucine. Each of the three substitutions folded into a stable protein with the same or higher melting points than the wild-type, but only Pro61Ala was functionally active in stimulating Hin-mediated DNA inversion. Pro61Ala formed crystals that were isomorphous with the wild-type protein allowing the structure to be determined at 1.9-A resolution by x-ray diffraction methods. The structure of the Pro61Ala mutant is almost identical to the wild-type protein, consistent with its near wild-type activity. One of the alpha-helices, the B-helix, is kinked in the wild-type Fis protein by 20 degrees which was previously assumed to be caused solely by the presence of proline 61 in the center of the helix. However, the B-helix is still kinked by 16 degrees when proline 61 is replaced by alanine. Local peptide backbone movement around residue 57 adjusts the geometry of the helix to accommodate the new main chain hydrogen bond between the -CO group in Glu57 and the -NH group in Ala61. Thus, the kink of the alpha-helix in Pro61Ala does not require the presence of proline.  相似文献   

14.
15.
16.
The three-dimensional structure of the DNA-binding domain of the E2 protein from human papillomavirus-31 was determined by using multidimensional heteronuclear nuclear magnetic resonance (NMR) spectroscopy. A total of 1429 NMR-derived distance and dihedral angle restraints were obtained for each of the 83-residue subunits of this symmetric dimer. The average root mean square deviations of 20 structures calculated using a distance geometry-simulated annealing protocol are 0.59 and 0.90 angstroms for the backbone and all heavy atoms, respectively, for residues 2-83. The structure of the human virus protein free in solution consists of an eight-stranded beta-barrel and two pairs of alpha-helices. Although the overall fold of the protein is similar to the crystal structure of the bovine papillomavirus-1 E2 protein when complexed to DNA, several small but interesting differences were observed between these two structures at the subunit interface. In addition, a beta-hairpin that contacts DNA in the crystal structure of the protein-DNA complex is disordered in the NMR structures, and steady-state 1H-15N heteronuclear NOE measurements indicate that this region is highly mobile in the absence of DNA. The recognition helix also appears to be flexible, as evidenced by fast amide exchange rates. This phenomenon has also been observed for a number of other DNA-binding proteins and may constitute a common theme in protein/DNA recognition.  相似文献   

17.
18.
19.
In the filamentous fungus Neurospora crassa during conditions of sulfur limitation, CYS3, a major positive-acting regulatory protein, turns on the expression of an entire set of genes which encode permeases and enzymes involved in the acquisition of sulfur from environmental sources. CYS3 functions as a homodimeric protein and possesses a b-Zip domain that confers sequence-specific DNA binding. Expression of various hybrid GAL4-CYS3 fusion proteins in yeast was used to detect regions involved in gene activation. An amino-terminal serine/threonine-rich domain of CYS3 alone strongly activated expression of beta-galactosidase, the yeast reporter. Moreover, mutant CYS3 proteins with amino-acid substitutions in this region that showed increased expression in Neurospora also displayed an enhanced activation potential in yeast. The cys-3 gene of the exotic N. crassa Mauriceville strain and of N. intermedia were cloned and demonstrated to be functional for gene activation and for sulfur-mediated regulation by complementation of a loss-of-function cys-3 mutation. The amino-terminal serine/threonine-rich region is highly conserved in these two CYS3 proteins, in agreement with the possibility that it serves as the activation domain. Surprisingly, an extended promoter region of the cys-3 gene in the Mauriceville strain and in N. intermedia was very well conserved with that of the standard N. crassa gene, including the presence of three CYS3-binding sites possibly involved in autogenous control. Results are presented which indicate that synthesis of the CYS3 regulatory protein is highly regulated and can be detected in the nucleus of cells subjected to sulfur de-repression, but is not found in the nucleus or the cytoplasm of S-repressed cells. The amino-acid substitutions of the CYS3 protein present in a temperature-sensitive cys-3 mutant and in a second-site revertant of a cys-3 null mutation are presented and are shown to affect their DNA-binding activities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号