首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Continuous synthesis of surface-modified zinc oxide (ZnO) nanoparticles was examined using surface modifiers (oleic acid and decanoic acid) in supercritical methanol at 400 °C, 30 MPa and a residence time of ∼40 s. Wide angle X-ray diffraction (WAXD) analysis revealed that the surface-modified nanoparticles retained ZnO crystalline structure. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that the surface modifiers changed drastically the size and morphology of the ZnO nanoparticles. When the molar ratio of oleic acid to Zn precursor ratio was 30, 10 nm size particles with low degree of aggregation were produced. The surface-modified ZnO nanoparticles had higher BET surface areas (29-36 m2/g) compared to unmodified ZnO particles synthesized in supercritical water (0.7 m2/g). Fourier transform infrared (FT-IR) and thermogravimetric analysis (TGA) indicated that aliphatic, carboxylate and hydroxyl groups were chemically attached on the surface of ZnO nanoparticles. Long-term (80 days) dispersion test using ultraviolet transmittance showed that the surface-modified ZnO particles had enhanced dispersion stability in ethylene glycol.  相似文献   

2.
连续化条件下超临界甲醇法制备生物柴油   总被引:1,自引:0,他引:1  
在连续操作的管式反应器中,以大豆油为原料在压力11~19MPa,温度240~400℃的超临界甲醇条件下进行连续化制备生物柴油的研究。考察了在连续反应条件下醇油摩尔比、压力、温度、停留时间及共溶剂对大豆油转化率的影响。实验结果表明:较高的醇油摩尔比有利于油脂转化率的提高,但当醇油摩尔比超过40:1后提高醇油摩尔比对提高油脂转化率的影响不大;在11~15MPa范围内,压力升高对油脂转化率影响很大,但高于15MPa后压力对转化率的影响减弱;反应温度对油脂转化率有着重要影响,在300℃以上随着温度的升高,油脂转化率有较大幅度的上升,但温度太高油脂会发生分解反应;醇油摩尔比40:1,温度350℃,压力15MPa,停留时间1000s是该实验获得的最佳反应条件,在该条件下油脂转化率可达89%。实验还研究了添加共溶剂四氢呋喃对油脂转化率的影响。  相似文献   

3.
Over the past decade, the subject of “greener chemistry" and chemical processes has been emphasized. The “greener chemistry” improves environmental efficiency in reducing the consumption of resources and energy and achieving a stable economic development of the environment. Nanotechnology is investigating nanoscale materials that have applications in the area of biotechnology and nanomedicine alongside several other significant applications such as cosmetics, drug delivery, and biosensors. The different shapes and sizes of nanoparticles can be synthesized with physical, chemical, or biological methods. The tendency to produce nanomaterials, especially metal oxides, and use them, is increasing because of their exciting properties in the nanoscale. However, metal oxide nanoparticles produced by chemical methods have significant concerns due to hazardous and toxic chemicals and their environmental damage. The production of metal oxide nanoparticles using the principles of greener chemistry has found a special place in research. Increased awareness of greener chemistry and biological processes has necessitated using environmentally friendly methods for the production of non-toxic nanomaterials. Plants and polymeric materials as renewable and inexpensive sources have received particular attention to prepare nano biomaterials. The use of plants to synthesize metal oxide nanoparticles because of the non-use toxic pollutants is one of the environmentally friendly methods, and that's why this type of synthesis is called greener synthesis. In this review, we exhibit a total sight of greener synthesis methods for producing metal oxide nanoparticles and their medical applications.  相似文献   

4.
Huayang He 《Fuel》2007,86(3):442-447
A system for continuous transesterification of vegetable oil using supercritical methanol was developed using a tube reactor. Increasing the proportion of methanol, reaction pressure and reaction temperature can enhance the production yield effectively. However, side reactions of unsaturated fatty acid methyl esters (FAME) occur when the reaction temperature is over 300 °C, which lead to much loss of material. There is also a critical value of residence time at high reaction temperature, and the production yield will decrease if the residence time surpasses this value. The optimal reaction condition under constant reaction temperature process is: 40:1 of the molar ratio of alcohol to oil, 25 min of residence time, 35 MPa and 310 °C. However, the maximum production yield can only be 77% in the optimal reaction condition of constant reaction temperature process because of the loss caused by the side reactions of unsaturated FAME at high reaction temperature. To solve this problem, we proposed a new technology: gradual heating that can effectively reduce the loss caused by the side reactions of unsaturated FAME at high reaction temperature. With the new reaction technology, the methyl esters yield can be more than 96%.  相似文献   

5.
Surface-modified ceria oxide (CeO2) nanoparticles were synthesized continuously in supercritical methanol at 400 °C, 30 MPa and a residence time of 40 s using a flow type reactor system. Oleic acid and decanoic acid were used as the surface modifiers. Transmission electron microscopy (TEM) showed that the surface modifiers changed drastically the shape and size of the nanoparticles. When 0.3 M of the surface modifiers were used, primary particles with diameter of 2–3 nm loosely aggregated and formed secondary particles with size of 30–50 nm. Wide angle X-ray diffraction (WAXD) analysis revealed that the surface-modified nanoparticles retained CeO2 crystalline structure. The surface-modified CeO2 nanoparticles had a very high surface area (140–193 m2/g) compared to the unmodified CeO2 particles synthesized in supercritical water (8.5 m2/g). Fourier transform infrared (FT-IR) and thermogravimetric analysis (TGA) indicated that aliphatic, carboxylate and hydroxyl groups were chemically bounded on the surface of CeO2 nanoparticles. Dispersability test using ultraviolet transmittance showed that most of the surface-modified CeO2 nanoparticles were dispersed in ethylene glycol for 30 days while the unmodified CeO2 particles synthesized in supercritical water or in supercritical methanol were precipitated after 7–15 days.  相似文献   

6.
A process of supercritical three-phase methanol synthesis on a Cu-based catalyst C302-2, which has high activity at low temperature and low pressure, has been carried out in a mechanically agitated slurry reactor with paraffin as the inert liquid medium and n-hexane as the supercritical medium. The reaction conditions are as follows: pressure ranging from 6.0 to , temperature ranging from 235 to and mass space velocity from 450 to . The influences of these conditions on the conversion of CO and the outlet methanol mole fraction have been investigated in detail. The results show that both the conversion of CO and outlet methanol mole fraction decreased when the mass space velocity and the temperature were increased under the condition of supercritical n-hexane. In addition, we compared the three-phase slurry bed methanol synthesis with and without supercritical medium. The results show that the conversion of CO, CO2 and H2 as well as outlet methanol mole fraction of supercritical three-phase methanol synthesis are obviously higher than those chemical equilibrium values of gas-solid reaction under the corresponding experimental condition. That is to say, the process of supercritical three-phase methanol synthesis with n-hexane at supercritical state can remove the limitation of chemical reaction balance of the reversible exothermic methanol synthesis reaction on the conversion of reactants by introducing a supercritical medium that plays an important role in the reaction-separation coupling process in methanol synthesis, by which the conversion of reactants and outlet methanol mole fraction at supercritical condition are increased greatly. Therefore, they are higher than those of three-phase methanol synthesis without supercritical n-hexane. The advantage of supercritical three-phase methanol synthesis is self-evident. Our present study provides an experimental foundation for further engineering exploitation research on the three-phase methanol synthesis process with supercritical medium in three-phase slurry reactors.  相似文献   

7.
Weiliang Cao 《Fuel》2005,84(4):347-351
Transesterification of soybean oil in supercritical methanol has been carried out in the absence of catalyst. A co-solvent was added to the reaction mixture in order to decrease the operating temperature, pressure and molar ratio of alcohol to vegetable oil. With propane as co-solvent in the reaction system, there was a significant decrease in the severity of the conditions required for supercritical reaction, which makes the production of biodiesel using supercritical methanol viable as an industrial process. A high yield of methyl esters (biodiesel) was observed and the production process is environmentally friendly. Furthermore the co-solvent can be reused after suitable pretreatment.  相似文献   

8.
Advanced chemical recycling of carbon fiber reinforced plastic (CFRP) was developed using supercritical methanol. In this method, the thermosetting epoxy resin in CFRP was converted to a thermoplastic resin by the selective decomposition of the bridged structure by supercritical methanol at 270 °C and 8 MPa for 90 min and the resin dissolved in supercritical methanol. On the other hand, the carbon fiber was fully recovered from CFRP without the plastic component and it had no thermal damage. The bridged structure in the epoxy resin could be formed again by adding a cross-linker to the recovered thermoplastic resin and the thermosetting resin was reproduced. This was the first attempt on the recycling of thermosetting epoxy resin. However, in order to maintain the strength of the recycled epoxy resin to that of virgin epoxy resin, the proper ratio of the recovered thermoplastic resin to virgin epoxy resin was determined. The recovered carbon fiber from CFRP maintained the shape of the plain fabric and the reduction of the tensile strength was less than 9% compared with the virgin one. The recovered carbon fiber could be used to make a recycled CFRP with epoxy resin and cross-linker, the strength of which was close to that of virgin CFRP.  相似文献   

9.
We report a simple method to synthesize Ag, Au, and Pt nanoparticles with a reasonable size dispersity using water-dispersible conducting polymer colloids composed of polyaniline (PANI) and conventional polyelectrolyte. This facile synthesis results in single crystalline metal nanoparticles that are stable in an aqueous solution for at least several weeks. The process involves incrementally adding a metal ion solution to aqueous conducting polymer colloids and does not require reducing agents such as NaBH4. In addition, the complete synthetic and purification procedure is carried out in an aqueous solution; therefore, it is environmentally benign and potentially suitable for large-scale production. We have also demonstrated synthesis of larger nanoparticles and nanosheets by varying the experimental parameters. With the tunable oxidation states of conducting polymers, we expect this synthetic platform can synthesize a wide range of nanostructured metals with specific size, shape and properties. Finally, the nanoparticles embedded in the conducting polymer matrix, the metal-polyaniline nanocomposite itself may be interesting since it represents a type of materials where metallic nanoislands are embedded in a semiconducting matrix.  相似文献   

10.
Organic nanoparticles recovery in supercritical antisolvent precipitation   总被引:1,自引:0,他引:1  
One of the major problems in dry nanoparticles production and handling is their recovery. Indeed, they tend to disperse in all the precipitation chamber and, due to their dimensions, are very difficult to collect.Supercritical antisolvent precipitation (SAS) was frequently used to produce nanoparticles at very mild conditions of pressure and temperature, but the issues of sedimentation mechanisms and nanoparticles recovery as single units, have not been evaluated yet.In this work, SAS nanoparticles were produced for samarium acetate, rifampicin, astemizole, amoxicillin trihydrate, tetracycline hydrochloride, clemastine, cellulose acetate and disperse red 60; the powders were collected as aggregates, due to the specific sedimentation mechanism that characterizes the process. SAS produced nanoparticles of the previously listed materials were precipitated from different organic solvents. Then, they were post-processed by ultrafiltration, ultracentrifugation and ultrasound based techniques, demonstrating that they can be easily separated in single nano-units. Nanoparticles showed mean diameters in the range 50-150 nm.  相似文献   

11.
Metal and metal oxide nanoparticles were synthesized using supercritical water (SCW) as a reaction medium and glycerol as a reducing agent at 400 °C and 300 bar. X-ray diffraction (XRD) patterns confirmed that silver, copper and nickel nitrates were reduced to zero-valent metal nanoparticles. On the other hand, cobalt, iron and manganese nitrates were partially reduced into low-valent metal oxides. Scanning electron microscopy (SEM) images showed that the reduced metals and metal oxides were smaller than the metal oxides formed without glycerol. The difference in reduction behavior of elements is explained using their reduction potentials. Glycerol proved to be an effective reducing agent for hydrothermal applications.  相似文献   

12.
In situ surface modification of boehmite (AlOOH) nanoparticles during hydrothermal synthesis in supercritical water was examined by adding CH3(CH2)4CHO and CH3(CH2)5NH2 as modifier reagents to the reactants. Changes in surface properties of the nanoparticles by surface modification was observed by FTIR, dispersion in solvents and TEM analyses, which demonstrated that reagents chemically binded onto the surface of the AlOOH nanoparticles. The results of SEM and TEM pictures show that the surface modification affects crystal growth and reduces the particle size and changes the morphology of the particles.  相似文献   

13.
14.
《Ceramics International》2016,42(3):4386-4392
Solid biomasses can be exploited as an effective source of energy if they can be converted into liquid and gaseous fuels. In this study, highly crystalline Ag–Mn2O3 nanoflakes are introduced as effective catalyst for cracking of lignin into alcohols in supercritical methanol medium. The introduced catalyst was synthesized by a sol–gel process. Typically, mixing of manganese acetate, silver nitrate and citric acid solutions led to form a continuous gel when the pH was kept at 7. Drying, grinding and calcination (at 600 °C) of the obtained gel resulted in producing Ag-Mn2O3 nanoflakes. The utilized XRD, SEM, FE-SEM and TEM analyses affirmed the concluded structure and morphology. The introduced inorganic nanostructure could successfully catalyze degradation of lignin into liquid alcohols when the solid biomass was catalytically treated in an autoclave reactor in presence of methanol at 180 °C. The experimental results indicated that maximum lignin dissolution of 42.5 wt% can be obtained when the catalyst content is kept at 17 wt% and treatment time of 2 h. Overall, the present study opens new avenue for the stable ceramic catalysts for solid biowastes conversion into valuable products.  相似文献   

15.
Eiji Minami  Shiro Saka   《Fuel》2006,85(17-18):2479-2483
For high-quality biodiesel fuel production from oils/fats, the catalyst-free two-step supercritical methanol process has been developed in a previous work, which consists of hydrolysis of triglycerides to fatty acids in subcritical water and subsequent methyl esterification of fatty acids to their methyl esters in supercritical methanol. In this paper, therefore, kinetics in hydrolysis and subsequent methyl esterification was studied to elucidate reaction mechanism. As a result, fatty acid was found to act as acid catalyst, and simple mathematical models were proposed in which regression curves can fit well with experimental results. Fatty acid was, thus, concluded to play an important role in the two-step supercritical methanol process.  相似文献   

16.
Catalytically active supercritical fluid to accelerate methanol synthesis   总被引:2,自引:0,他引:2  
P. Reubroycharoen  Y. Yoneyama  T. Vitidsant  N. Tsubaki   《Fuel》2003,82(18):2255-2257
Supercritical phase 2-butanol significantly increased the conversion of methanol synthesis from syngas not only by the conventional promotion effect of supercritical fluid but also by the catalytic effect of 2-butanol solvent itself, breaking through the thermodynamic limitation of this reaction effectively.  相似文献   

17.
Surface-modified zero-valent copper nanoparticles (CuNPs) are of interest as conductive inks for applications in printed electronics. In this work, we report on the synthesis, stability and characterization of CuNPs formed with a continuous supercritical hydrothermal synthesis method. The precursor, copper formate, was fed as an aqueous solution with polyvinylpyrrolidone (PVP) surface modifier and mixed with an aqueous water and formic acid stream to have reaction conditions of 400 °C, 30 MPa and 1.1 s mean residence time. The reaction pathway seemed to proceed step-wise as the hydrolysis of copper formate, followed by dehydration to oxide products and subsequent reduction by hydrogen derived from precursor and formic acid decomposition. The formed surface-modified zero-valent CuNPs had particle sizes of ca. 18 nm, were spherical in shape and contained no oxide contaminants. The formed CuNPs were found to exhibit long-term (>1 year) stability in ethanol as evaluated by shifts in the surface plasmon resonance band of product solutions. Conductive films (0.33 μm thickness) prepared with the CuNPs had a resistivity of 16 μΩ cm. The methods reported in this work show promise for producing conductive inks for use in practical printed electronics.  相似文献   

18.
Oxidation stability of biodiesel fuel as prepared by supercritical methanol   总被引:4,自引:0,他引:4  
Jiayu Xin  Hiroaki Imahara  Shiro Saka   《Fuel》2008,87(10-11):1807-1813
A non-catalytic supercritical methanol method is an attractive process to convert various oils/fats efficiently into biodiesel. To evaluate oxidation stability of biodiesel, biodiesel produced by alkali-catalyzed method was exposed to supercritical methanol at several temperatures for 30 min. As a result, it was found that the tocopherol in biodiesel is not stable at a temperature higher than 300 °C. After the supercritical methanol treatment, hydroperoxides were greatly reduced for biodiesel with initially high in peroxide value, while the tocopherol slightly decreased in its content. As a result, the biodiesel prepared by the supercritical methanol method was enhanced for oxidation stability when compared with that prepared by alkali-catalyzed method from waste oil. Therefore, supercritical methanol method is useful especially for oils/fats having higher peroxide values.  相似文献   

19.
A scale-up plug flow reactor was evaluated for the continuous production of biodiesel from refined palm kernel oil (PKO) with supercritical methanol and optimized by response surface methodology. The effects of the operating temperature (270–350 °C), pressure (15.0–20.0 MPa) and methanol:PKO molar ratio (20:1–42:1) were evaluated at a constant residence time of 20 ± 2 min by using a central composite design. Analysis of variance demonstrated that a modified quadratic regression model gave the best coefficient of determination (R2 = 0.9615) and adjusted coefficient of determination (Adj. R2 = 0.9273). The interaction terms in the regression model illustrated small synergistic effects of both temperature–pressure and temperature–methanol:PKO molar ratio. The optimal conditions were 325 ± 5 °C, 18.0 ± 0.5 MPa and a methanol:PKO molar ratio of 42 ± 2:1, attaining a maximum production rate of 18.0 ± 1.5 g biodiesel/min with a fatty acid methyl ester content of 93.7 ± 2.1%. The product obtained from the optimal conditions had high cetane number, and could be considered as a fuel additive for cetane number enhancement.  相似文献   

20.
In this research, synthesis of lanthanum oxide nanoparticles using supercritical water as a reaction medium in batch type reactor was studied. The crystallographic identity and morphology of the synthesized nanoparticles were investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD patterns indicate that the well-crystallized lanthanum oxide nanocrystals can be easily obtained under the current synthetic conditions. The effect of four parameters includes temperature, reaction time; primary concentration of aqueous solution of lanthanum (III) nitrate and pH of starting solution on reaction efficiency, particle size and the BET surface area were investigated using 24−1 fractional factorial design. Finally, by employing a regression analysis a model based on effect of significant main variables and their binary interactions was proposed which can predict the percentage of reaction efficiency with acceptable confidence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号