共查询到20条相似文献,搜索用时 11 毫秒
1.
Martin Schubert 《The Journal of Supercritical Fluids》2010,52(1):99-11727
The precipitation and separation performance of various binary type 1 salt-water mixtures was systematically studied for the first time in a continuously operated laboratory plant. The aim was to find a field of operation for the salt separator where salts can be separated with high efficiency. Experiments with aqueous solutions of the salts NaNO3, KNO3, Ca(NO3)2, K2CO3, KHCO3, (NH4)2CO3, K3PO4, K2HPO4, KH2PO4, NaCl, KCl, NH4Cl and (NH4)2SO4 were carried out at 30 ± 0.5 MPa varying the salt separator temperature from sub-critical to supercritical. For most of these salts separation efficiencies ranging from 80 to 97% were obtained. For the nitrates the separation efficiency increased in the order NaNO3 < KNO3 < Ca(NO3)2, whereas for potassium salts the separation efficiency of the phosphates was significantly higher than that of KNO3. Considerable hydrolysis of the phosphate and the hydrogen phosphate salts in supercritical water was found, although this had no negative influence on the phosphate separation efficiency. It was found that the ammonium salts decompose in supercritical water, probably to ammonia and the corresponding mineral acids, leading to reduced separation of the ammonia due to its high solubility in supercritical water. 相似文献
2.
At the Paul Scherrer Institut (PSI) a continuous process for the catalytic hydrothermal gasification of wet biomass to synthetic natural gas (SNG) has been developed. The catalytic reactor is operated at temperatures of 400–450 °C and pressures of 25–30 MPa. Salts contained in the biomass and released during the liquefaction step are continuously withdrawn in the supercritical salt separation step and recovered as a concentrated brine upstream of the catalytic reactor. The recovered salts may be recycled as valuable nutrients or fertilizers after a certain work-up.Salt management was identified as critical issue in many different hydrothermal processes such as supercritical water oxidation (SCWO) and in catalyzed or non-catalyzed gasification technologies in near- and supercritical water. In this article we focus on the influence of organics, in this case glycerol and its hydrothermal degradation products, on the continuous salt separation performance. In the presence of organics higher temperatures are needed in the salt separator for an efficient salt separation and recovery due to a higher overall fluid density in the presence of glycerol compared to the density of pure water at the same conditions. Increasing temperatures in the salt separator lead to an increased degradation and, in particular, gasification of the glycerol. The salt studied, i.e. K3PO4, catalyzed the gasification of the glycerol to CO, H2, CO2, and CH4 as well as the water gas shift reaction. Due to the increased glycerol gasification at 460 °C in the salt separator, the fluid mixture density was lowered to similar values of pure water under the same conditions. Hence, at the fluid temperature of 460 °C in the salt separator the same salt separation performance was observed for water–K3PO4 and for an aqueous mixture of 20 wt.% glycerol with K3PO4. 相似文献
3.
Corrosion control methods in supercritical water oxidation and gasification processes 总被引:2,自引:0,他引:2
Use of supercritical water (SCW) as a medium for oxidation reactions, conversion of organic materials to gaseous or liquid products, and for organic and inorganic synthesis processes, has been the subject of extensive research, development, and some commercial activity for over 25 years. A key aspect of the technology concerns the identification of materials, component designs, and operating techniques suitable for handling the moderately high temperatures and pressures and aggressive environments present in many SCW processes. Depending upon the particular application, or upon the particular location within a single process, the SCW process environment may be oxidizing, reducing, acidic, basic, nonionic, or highly ionic. Thus, it is difficult to find any one material or design that can withstand the effects of all feed types under all conditions. Nevertheless, several approaches have been developed to allow successful continuous processing with sufficient corrosion resistance for an acceptable period of time. The present paper reviews the experience to date for methods of corrosion control in the two most prevalent SCW processing applications: supercritical water oxidation (SCWO) and supercritical water gasification (SCWG). 相似文献
4.
Biomass gasification in supercritical water: Part 1. Effect of the nature of biomass 总被引:2,自引:0,他引:2
In this study, biomass feedstocks, including lignocellulosic materials and the tannery wastes, were gasified in supercritical water. Gasification experiments were performed in a batch autoclave at 500 °C. The amount of gases, the gas compositions and the amount of water soluble compounds from gasification were determined. The hydrogen yields ranging between 4.05 and 4.65 mol H2/kg biomass have been obtained. The results showed that the yields and composition of gases depend also on the organic materials other than cellulose and lignin in lignocellulosic material. In addition to this, it was concluded that the kind of lignin may also have an effect on gasification products. In the case of tannery wastes, the type of tannen agent used in leather production considerably effected the gasification results. 相似文献
5.
The gasification of organics in supercritical water is a promising method for the direct production of hydrogen at high pressures, and in order to improve the hydrogen yield or selectivity, activities of various catalysts are evaluated. In this study, hydrogen production from 2-propanol over Ni/Al2O3 and Fe–Cr catalysts was investigated in supercritical water. The experiments were carried out in the temperature range of 400–600 °C and in the reaction time range of 10–30 s, under a pressure of 25 MPa. The hydrogen yields and selectivities of Ni/Al2O3 and Fe–Cr used in this study, and those of Pt/Al2O3 and Ru/Al2O3 used in our previous work were compared. The hydrogen contents of the gaseous products obtained by using Ni/Al2O3 and Fe–Cr were measured as 62 mol% and 70 mol%, respectively, at low temperatures and reaction times. However, the hydrogen yields remained in low levels when compared with that of Pt/Al2O3 used in previous study. Pt/Al2O3 was established to be the most effective and selective catalyst for hydrogen production. During the catalytic gasification of a 0.5 M solution of 2-propanol, hydrogen content up to 96 mol% and hydrogen yield of 1.05 mol/mol 2-propanol were obtained. 相似文献
6.
Hydrothermal gasification of olive mill wastewater as a biomass source in supercritical water 总被引:1,自引:0,他引:1
In this study, the hydrothermal gasification of biomass in supercritical water is investigated. The work is of peculiar value since a real biomass, olive mill wastewater (OMW), is used instead of model biomass compounds. OMW is a by-product obtained during olive oil production, which has a complex nature characterized by a high content of organic compounds and polyphenols. The high content of organics makes OMW a desirable biomass candidate as an energy source. The hydrothermal gasification experiments for OMW were conducted with five different reaction temperatures (400, 450, 500, 550 and 600 °C) and five different reaction times (30, 60, 90, 120 and 150 s), under a pressure of 25 MPa. The gaseous products are mainly composed of hydrogen, carbon dioxide, carbon monoxide and C1-C4 hydrocarbons, such as methane, ethane, propane and propylene. Maximum amount of the gas product obtained is 7.71 mL per mL OMW at a reaction temperature of 550 °C, with a reaction time of 30 s. The gas product composition is 9.23% for hydrogen, 34.84% for methane, 4.04% for ethane, 0.84% for propane, 0.83% for propylene, 49.34% for carbon dioxide, and 0.88% for minor components such as n-butane, i-butane, 1-butene, i-butene, t-2-butene, 1,3-butadiene and nitrogen at this reaction conditions. 相似文献
7.
Flow separation from a spherical particle in supercritical water (SCW) is the basic flow structure in supercritical water fluidized bed (SCWFB). In order to study flow separation from a spherical particle in SCW in detail, a numerical model fully accounting for variations in thermo-physical properties has been developed in the pseudo-critical zone. Flow separation parameters (separation angle, length of wake vortex, width of wake vortex, and drag coefficient) for forced convection, assisting convection, and opposing convection have been obtained at intermediate Reynolds numbers. Results show that variable viscosity has a remarkable effect on flow separation, and the decreasing viscosity results in higher velocity gradient around the sphere particle surface and a larger wake vortex on the rear particle surface. A simple expression of Cd/Cdc=(μw/μf)0.15 is achieved to predicate the drag coefficient of the SCW flow with μw/μf between 0.7 and 1.0. Free convection inhibits the flow separation of the assisting convection, but enhances the flow separation of the opposing convection. Three flow separation zones (the rear-end separation zone, the transition zone, and the reversed flow zone) are observed for the opposing convection. 相似文献
8.
Akshay Yadav Nilesh Gandhi Supriya Apegaonkar Ramesh Bhujade Vedprakash Mishra 《分离科学与技术》2018,53(10):1580-1591
Salt separation at super-critical condition is a promising technology to separate dissolved salts from water by utilizing sharp changes in thermal and physical properties of water close to its critical point in a tube in tube separator. To capture flow complexity and geometric asymmetry, a three-dimensional CFD model of salt separator is developed in Fluent ver 16. Simulation results are compared and validated with experimental work by Schubert et al. [19]. The axial temperature profiles predicted by model at different wall temperature are well in agreement with the reported data [19]. The model provides insight to axial and radial flow field, temperature gradients, and so on within the salt separator. The blurred boundary between super-critical and sub-critical regions is captured by accounting sharp changes in physical properties of water close to critical temperature and pressure. Sensitivity of key process parameters (e.g., vessel wall temperature, feed pre-heat temperature, flow rates and forced cooling in cold region) was carried out to check effect of operating parameters on deviation in performance of salt separator. No pre-heat feed condition (25°C) is best since it ensures no salt deposition in dip tube without affecting the salt separator performance. Optimum wall temperature lies between 390°C to 470°C to avoid salt deposition and maintain desired temperature gradient between hot and cold section. The modelling framework will aid in efficient design and scale up of salt separator. 相似文献
9.
Ingo Leusbrock Sybrand J. Metz Geert F. Versteeg 《The Journal of Supercritical Fluids》2010,54(1):1-11727
Inorganic compounds are regularly present in aqueous streams. To understand their influence and behavior on these streams at supercritical conditions, little to no property data is available, which can be used as starting point for further research or application design. Since inorganic compounds tend to precipitate at these conditions, scaling, blocking and erosion can occur as a consequence. Furthermore, a separation of (precious) compounds from the bulk stream due to the precipitation is possible. Here, phosphate compounds are regarded as interesting for further investigation since resources are assumed to be depleted in future. As phosphate is present in many waste streams, these could be used as sources for recoverable phosphate. Resulting from these facts and options, a proper understanding and knowledge of these systems is important for later industrial applications. Therefore, the authors have investigated the behavior of salts (e.g. NaCl, NaNO3 and MgCl2) in supercritical water in previous works.To extend this knowledge, the solubilities of the sulfate salts MgSO4 and CaSO4 in a range of 18.8-23.2 MPa and 655-675 K as well as of the phosphate salts Na2HPO4, NaH2PO4 and CaHPO4 in a range of 20.5-24.2 MPa and 665-690 K were investigated in this work with a continuous flow method in continuation of former work of the authors. The solubilities were compared with existing data available from open literature. A quantitative correlation on base of a phase equilibrium between the present phases was used to describe the behavior and to compare it with previous results. For the investigated calcium salts, CaSO4 and CaHPO4, it was found that a significant solubility decrease already happens at subcritical conditions resulting in precipitation in unwanted locations. For the remaining compounds, a parallel hydrolysis reaction was found as could be seen from a change in pH in the effluent stream. 相似文献
10.
Kiwamu Sue Kazuhito Kimura Kenji Murata Kunio Arai 《The Journal of Supercritical Fluids》2004,30(3):325-331
Hydrothermal synthesis of zinc oxide fine particles from zinc salt (Zn(CH3COO)2, ZnSO4, Zn(NO3)2) and alkali metal hydroxide (LiOH, KOH) aqueous solution was carried out with a Ti alloy batch reactor in supercritical water. Particle size synthesized in LiOH solution was relatively smaller than that in KOH. Emission spectra of the particle produced from ZnSO4 and LiOH aqueous solution shows the highest intensity among these systems. Hydrothermal synthesis of zinc oxide fine particles from Zn(NO3)2 and LiOH solution was also carried out with a flow-through apparatus for continuous production and rapid heating of the starting solution to supercritical states. Nanoparticles having an average particle diameter of 16 nm was produced at 659 K and 30 MPa. 相似文献
11.
Hydrothermal synthesis and in situ surface modification of boehmite nanoparticles in supercritical water 总被引:1,自引:1,他引:1
T. Mousavand S. Ohara M. Umetsu J. Zhang S. Takami T. Naka T. Adschiri 《The Journal of Supercritical Fluids》2007,40(3):397-401
In situ surface modification of boehmite (AlOOH) nanoparticles during hydrothermal synthesis in supercritical water was examined by adding CH3(CH2)4CHO and CH3(CH2)5NH2 as modifier reagents to the reactants. Changes in surface properties of the nanoparticles by surface modification was observed by FTIR, dispersion in solvents and TEM analyses, which demonstrated that reagents chemically binded onto the surface of the AlOOH nanoparticles. The results of SEM and TEM pictures show that the surface modification affects crystal growth and reduces the particle size and changes the morphology of the particles. 相似文献
12.
Shin-ichiro Kawasaki Yan Xiuyi Kiwamu Sue Yukiya Hakuta Akira Suzuki Kunio Arai 《The Journal of Supercritical Fluids》2009,50(3):276-282
The production of size-controlled and highly crystalline anatase titanium dioxide (TiO2) nanoparticles was carried out under supercritical hydrothermal conditions (400 °C and 30 MPa) in a continuous flow apparatus with a residence time of 1.7 s. An industrially useful titanium sulfate (Ti(SO4)2) solution was used as the starting solution. KOH was used to change TiO2 solubility and pH and thereby control the particle size. The apparatus comprised two micromixers operating at high temperature. The first mixer was configured to prepare a supercritical aqueous KOH solution from supercritical water (SC-H2O) and KOH. The second mixer combined this KOH solution with aqueous Ti(SO4)2. In situ pH control and homogeneous nucleation were achieved in the second mixer. This two-step high-temperature micromixing process produced reasonably small and homogeneous particles. The particles were characterized by transmission electron microscopy (TEM) on the basis of morphology, average size, and size distribution, together with the coefficient of variation (CV). Powder X-ray diffraction (XRD) was used to determine the crystal structure and crystalline size. The weight loss of material was found through thermogravimetric (TG) measurement. The crystal structure of the product was assigned to the anatase single phase. The average particle size could be adjusted in the range 13–30 nm while maintaining a CV of 0.5 by changing the KOH concentration. At low pH, the powder XRD results for crystallite size were in good agreement with the average particle size measured by TEM, confirming that the products were single crystals of TiO2 nanoparticles. When the reactor temperature was increased from 400 to 500 °C, the weight loss decreased from 4.5 to 2.5%, keeping the average particle size and high crystallinity of the TiO2 particles unchanged. 相似文献
13.
Biomass conversions in subcritical and supercritical water: driving force, phase equilibria, and thermodynamic analysis 总被引:10,自引:0,他引:10
Wei Feng Hedzer J. van der Kooi Jakob de Swaan Arons 《Chemical Engineering and Processing: Process Intensification》2004,43(12):1459-1467
Two biomass conversion processes have been studied: hydrothermal upgrading (HTU) under subcritical water conditions; supercritical water gasification (SCWG) in supercritical water. For the design of the two biomass conversion processes, the following contributions of thermodynamics have been presented: phase behavior and phase equilibria in the reactor and separators; indication of the favourable operation conditions and the trends in product distribution for the conversion reactions; construction of heat exchange network and exergy analysis. A wide variety of fluids have been dealt with, from small molecules to large molecules, including non-polar and polar substances. The statistical association fluids theory (SAFT) equation of state has been applied to calculate the mass distribution in different phases and to estimate the entropy and enthalpy values for different mass streams. 相似文献
14.
Ratna F. Susanti Laras W. Dianningrum Taewoo Yum Yunje Kim Youn-Woo Lee Jaehoon Kim 《Chemical Engineering Research and Design》2014
Continuous supercritical water gasification (SCWG) of various feedstocks of C1–C16 was conducted to produce hydrogen-rich gas. These feedstocks represent model compounds of biomass such as methanol/ethanol (alcohol-type), glucose and glycerol (byproducts of biodiesel synthesis), and model compounds of petroleum fuels such as iso-octane/n-octane (gasoline), n-decane/n-dodecane (jet fuels) and n-hexadecane (diesel). Almost complete gasification of all the feedstocks was achieved at 25 MPa, 740 °C and 10 wt% with low total organic carbon values of their liquid effluents. The hydrogen gas yields of each feedstock were very similar to the theoretical equilibrium yields estimated by Gibbs free energy minimization. SCWG at different gasification temperatures (650 and 740 °C) and concentrations (10 and 20 wt%) revealed that methanol and ethanol (alcohols), the simple oxygenated hydrocarbons, were easier to be gasified, producing negligible amounts of liquid products, when compared with long-chain hydrocarbons (iso-octane and n-decane) under the identical conditions. When the feedstock concentration was increased from 10 to 20 wt%, the equilibrium hydrogen ratio from iso-octane gasification decreased from 1.02 to 0.79 while that of n-decane increased from 1.12 to 1.50, implying that a branched hydrocarbon may be more resistant to gasification in supercritical water. 相似文献
15.
使用沉淀剂对垃圾焚烧飞灰水洗液中的重金属进行去除实验,并对去除重金属后水洗液中的无机盐进行分离回收。考察了无机、有机沉淀剂单独使用以及无机-有机沉淀剂联用对水洗液中重金属的去除效果,对纯化后的水洗液进行蒸发结晶分离,对不同沸点温度分离得到的无机盐的纯度进行分析。结果表明,无机沉淀剂碳酸钠与硫化钠相比硫化钠去除重金属的效果较好,在硫化钠与重金属物质的量比为1.5时重金属的总去除率可达89.02%;有机沉淀剂TMT-102、MT-103、RS-2568中去除重金属效果最好的是MT-103,在其添加量为400 mg/L时重金属的总去除率可达99.49%。将无机-有机沉淀剂联用,先以硫化钠与重金属物质的量比为1.5加入硫化钠,再加入40 mg/L的MT-103,飞灰水洗液中重金属的总去除率可高达99.60%。将纯化后的水洗液中的无机氯盐进行蒸发分离,蒸发沸点为114 ℃时一次蒸发结束,分离后的盐浆在不低于80 ℃条件下洗涤提纯,得到氯化钠的纯度在95%以上;将母液继续蒸发至沸点温度为126 ℃,然后降温结晶,粗钾按照液固质量比为1.5进行水洗,得到氯化钾的纯度在96%以上;最后的氯化钙母液蒸发至134 ℃,然后降温结晶,可得六水合氯化钙。 相似文献
16.
Young Ho Shin Seong-Mo Koo Dae Sung Kim Young-Ho Lee Bambang Veriansyah Jaehoon Kim Youn-Woo Lee 《The Journal of Supercritical Fluids》2009,50(3):250-256
A detailed investigation was made into the production of high temperature lithium cobalt oxide (HT-LiCoO2) particles by continuous hydrothermal synthesis via the reaction of cobalt nitrate, lithium hydroxide, and hydrogen peroxide. The experiments were carried out in both subcritical and supercritical water, at temperatures ranging from 300 to 411 °C, with residence times less than 1 min in all instances. Although Co3O4 particles were synthesized in subcritical water at similar reaction conditions designed for comparison, well-ordered particles of HT-LiCoO2 were obtained in supercritical water. In supercritical conditions, the variations in temperature and residence time did not have significant impacts on the average particle size, particle size distribution, or morphology of obtained HT-LiCoO2. However, it was important to supply excessive lithium hydroxide and hydrogen peroxide in order to synthesize single-phased HT-LiCoO2 particles without undesired by-products. The hydrothermal synthetic route for LiCoO2, CoO, and Co3O4 in both subcritical and supercritical conditions was postulated. 相似文献
17.
Acid catalyzed reactions of 1-octene on TiO2 in sub- and supercritical water were investigated (T = 250-450 °C, P = 11-33 MPa). The main products were 2-octene and 2-octanol. Additionally, other liner C8 alkenes and liner secondary C8 alcohols were produced as by-products. Through kinetic analysis, acid catalyzed reactions can divide into the reaction catalyzed by Lewis acidic sites on TiO2 and the reaction catalyzed by protons produced by the dissociation of water molecules. Each type of the reaction is affected by water density or ionic product of water, respectively, therefore, reaction mechanism changes with temperature and pressure. From the contribution of each reaction type, the temperature dependence of cis/trans ratio of produced 2-octene could also be explained. 相似文献
18.
Kazuaki Shibuki Taku M. Aida Hiromichi Hayashi 《The Journal of Supercritical Fluids》2010,54(2):266-271
Sub-micron sized Zn2SiO4:Mn2+ phosphors particles were continuously synthesized in supercritical water with a flow reactor. Colloidal silica or sodium silicate was used as the Si source. Zn and Mn sources were chosen from their nitrates, sulfates, and acetates. The syntheses were carried out at temperatures from 400 to 500 °C, at pressures from 30 to 35 MPa, at NaOH concentrations from 0.014 to 0.025 M, and for residence times from 0.025 to 0.18 s. Sodium silicate formed α- and β-Zn2SiO4:Mn2+ phases regardless of the Zn and Mn sources, while colloidal silica formed phases dependent on the type of Zn and Mn sources used in addition to the use of alkali. As the reaction temperature increased, the crystallinity of α-Zn2SiO4:Mn2+ phase increased and the Mn substitution into the Zn sites of the α-Zn2SiO4 phase decreased. Of the conditions studied, the most highly crystalline α-Zn2SiO4:Mn2+ was produced at a temperature of 400 °C, a pressure of 30 MPa, a NaOH concentration of 0.14 M, and a residence time of 0.13 s with Zn and Mn sulfates and colloidal silica as starting materials. The α-Zn2SiO4:Mn2+ fine particles synthesized were round in shape, had an average diameter of 268 nm, and exhibited a green-emission with a peak wavelength of 524 nm. 相似文献
19.
B. Breure E.A.J.F. Peters P.J.A.M. Kerkhof 《Separation and Purification Technology》2008,62(2):349-362
FricDiff is an energy efficient separation process based on a difference in transport velocities of the components of a gas or vapor mixture when they diffuse through a sweep gas (‘enhancer’). The separation process takes place inside the pores of a non-selective macro-porous barrier. In this paper the separation of a 2-propanol–water mixture with the FricDiff-principle is studied, using CO2 as the enhancer. A detailed numerical model is developed that describes the separation process that takes place inside a cylindrical FricDiff-unit. In this unit the vapor mixture to be separated and the sweep gas flow at opposite sides of a porous barrier in a counter current mode. Through the porous barrier selective mass transport of components of the feed mixture through the sweep gas takes place resulting in a separation. The model takes into account axial velocity profiles as a result of laminar flow of the gas and vapor mixtures through the flow channels, radial concentration gradients and radial velocities. The transport through the porous barrier is described with the Binary Friction Model. The influences of process conditions and the characteristics of the porous barrier on the separation process are studied. 相似文献
20.
The effects of water density on the acid-catalytic properties of TiO2 and WO3/TiO2 catalysts in supercritical water at 400 °C were investigated by using the kinetic analysis of the dehydration reaction of glycerol. The reaction selectivity of TiO2 and WO3/TiO2 catalysts and the apparent-reaction orders for water indicated that the acid-catalytic properties of these two catalysts show different dependence on water density. In the reaction using TiO2, the contribution of Lewis acid sites in TiO2 was large at a low water density, while the contribution of Brönsted acid sites in TiO2 increased with increasing water density. On the other hand, the reaction using WO3/TiO2 was mainly catalyzed by Brönsted acid sites in WO3/TiO2 even at a low water density, and the nature of Lewis/Brönsted acid sites in WO3/TiO2 was not influenced by the water density. 相似文献