首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of Ni substituted spinel LiNixMn2−xO4 (0 ≤ x ≤ 0.5) have been synthesized to study the evolution of the local structure and their electrochemical properties. X-ray diffraction showed a few Ni cations moved to the 8a sites in heavily substituted LiNixMn2−xO4 (x ≥ 0.3). X-ray photoelectron spectroscopy confirmed Ni2+ cations were partially oxidized to Ni3+. The local structures of LiNixMn2−xO4 were studied by analyzing the and A1g Raman bands. The most compact [Mn(Ni)O6] octahedron with the highest bond energy of Mn(Ni)O was found for LiNi0.2Mn1.8O4, which showed a Mn(Ni)O average bond length of 1.790 Å, and a force constant of 2.966 N cm−1. Electrolyte decomposition during the electrochemical charging processes increased with Ni substitution. The discharge capacities at the 4.1 and 4.7 V plateaus obeyed the linear relationships with respect to the Ni substitution with the slopes of −1.9 and +1.9, which were smaller than the theoretical values of −2 and +2, respectively. The smaller slopes could be attributed to the electrochemical hysteresis and the presence of Ni3+ in the materials.  相似文献   

2.
In this work the microstructure and magnetic properties of Mn-Zn ferrites powders were investigated. MnxZn1  xFe2O4 powders where x = 0.2; 0.35; 0.5; 0.65; 0.8 and 1.0 were obtained by citrate precursor method. Citrate resin precursor was burned on air atmosphere at 400 °C for 3 h. Mn-Zn powders were calcined at 950 °C during 150 min under inert atmospheres: N2 and rarefied atmosphere. Thermal analysis of precursor resin, phase evolution and microstructure of Mn-Zn ferrites powders were investigated by TG, DTA, XRD and SEM techniques. The powders calcined under rarefied atmosphere show spinel cubic structure and contamination of α-Fe2O3, while powders calcined under N2 presents only the spinel cubic structure. Particle size was observed by SEM ranging from 80 to 150 nm. The magnetic properties were measured employing a vibrating sample magnetometer (VSM). It was observed that the saturation magnetization Ms increased with the increase of Mn content. The Ms of Mn0.8Zn0.2Fe2O4 calcined on rarefied atmosphere and Mn0.8Zn0.2Fe2O4 calcined on N2 was 23.31 emu g−1 and 56.23 emu g−1, respectively.  相似文献   

3.
In this study, Zn2SiO4:Mn2+ luminescent phosphors were prepared by mixing nano-scale ZnO, SiO2, and MnO2 particles at the compositions corresponding to 2ZnO + SiO2 + X mol% MnO2 (Zn2SiO4X-MnO2, 0.02 ≤ X ≤ 0.05). The mixing powders were calcined from 900 °C to 1300 °C in air and in N2 atmosphere. No matter calcined in air or in N2 atmosphere, Zn2SiO4 was the mainly crystalline phase in particles calcined at 900 °C and was the only phase in particles calcined at 1000 °C and higher. The influences of MnO2 concentration and calcining atmosphere and temperature on wavelength of luminescence peak and the emission intensity were further intensively investigated. We would show that the calcining atmosphere had no apparent influences on the physical and photoluminescence (PL) characteristics of Zn2SiO4:Mn2+ phosphors. The MnO2 content and the calcining temperature were the main reasons to influence the physical and PL characteristics of Zn2SiO4:Mn2+ phosphors.  相似文献   

4.
The 660 nm-featured (Ba, Sr) 3MgSi2O8:0.06Eu2 +, 0.1Mn2+(AMS-EM) phosphor in violet for red/blue bio-lighting LEDs was prepared by 2.45 GHz microwave (MW) high temperature firing procedure. The phase-pure host phase, (Ba, Sr) 3MgSi2O8, was formed to be responsible for simultaneous red band emission from Mn ion and blue band emission from Eu ion, while the formation of an impurity phase of Sr2SiO4 responsible for 505 nm-peaked green band emission for Eu ion was effectively suppressed owing to MW fast-heating procedure. Small sized and agglomeration-free phosphor particles were either observed, which was probably resulted from suppressing the grain growth in as-formed host particles, compared with conventional high-temp solid state (SS) reaction firing procedure. These results indicate that high-temp MW firing procedure is suitable for preparing this simultaneously red- and blue-emitting AMS-EM phosphor in the application of bio-lighting for plant cultivation.  相似文献   

5.
Lithium-deficient LiYMn2O4 spinels (LD-LiYMn2O4) with nominal composition (0.9 ≤ Y < 1) have been synthesized by melt impregnation from Mn2O3 and LiNO3 at temperatures ranging from 700 °C to 850 °C. X-ray diffraction data show that LD-LiYMn2O4 spinels are obtained as single phases in the range Y = 0.975-1 at 700 °C and 750 °C. Morphological characterization by transmission electron microscopy shows that the particle size of LD-LiYMn2O4 spinels increases on decreasing the Li-content. The influence of the Li-content and the synthesis temperature on the thermal and electrochemical behaviours has been systematically studied. Thermal analysis studies indicate that the temperature of the first thermal effect in the differential thermal analysis (DTA)/thermogravimetric (TG) curves, TC1, linearly increases on decreasing the Li-content. The electrochemical properties of LD-LiYMn2O4 spinels, determined by galvanostatic cycling, notably change with the synthesis conditions. So, the first discharge capacity, Qdisch., at C rate increases on rising the Li-content and the synthesis temperature. The sample Li0.975Mn2O4 synthesized at 700 °C has a Qdisch. = 123 mAh g−1 and a capacity retention of 99.77% per cycle. This LD-LiYMn2O4 sample had the best electrochemical characteristics of the series.  相似文献   

6.
A series of ZnxMg1 − xGa2O4:Co2+ spinels (x = 0, 0.25, 0.5, 0.75, and 1.0) was successfully produced through low-temperature burning method by using Mg(NO3)2·4H2O, Zn(NO3)2·6H2O, Ga(NO3)3·6H2O, CO(NH2)2, NH4NO3, and Co(NO3)2·6H2O as raw materials. The product was characterized by X-ray diffraction, transmission electron microscopy, and photoluminescence spectroscopy. The product was not merely a simple mixture of MgGa2O4 and ZnGa2O4; rather, it formed a solid solution. The lattice constant of ZnxMg1 − xGa2O4:Co2+ (0 ≤ x ≤ 1.0) crystals has a good linear relationship with the doping density, x. The synthesized products have high crystallinities with neat arrays. Based on an analysis of the form and position of the emission spectrum, the strong emission peak around the visible region (670 nm) can be attributed to the energy level transition [4T1(4P) → 4A2(4F)] of Co2+ in the tetrahedron. The weak emission peak in the near-infrared region can be attributed to the energy level transition [4T1(4P) → 4T2(4F)] of Co2+ in the tetrahedron.  相似文献   

7.
E. Ríos 《Electrochimica acta》2005,50(13):2705-2711
We conducted a study on the electroreduction of O2 in alkaline solution at room temperature on pure thin oxide electrodes of composition MnxCo3−xO4 (0 ≤ x ≤ 1) using the double channel electrode flow cell (DCEFC). The oxides were prepared at 150 °C and deposited by spray pyrolysis onto titanium substrates. The oxygen reduction reaction (orr) occurs through “interactive” and “parallel” pathways, and the ratio of O2 molecules reduced to OH ions with respect to those reduced to HO2 ions depends on the oxide stoichiometry and on the applied overpotential. The formation of HO2 increases when the manganese concentration increases. The results obtained for the orr show that the number of electrons transferred per O2 molecule decreases from 3 to 2 and the ratio k1/k2 (the rate constants for direct reduction to OH and indirect reduction to HO2) increases, respectively, in the overpotential studied range (−0.05 to −0.6 V). The Mn3+ ions placed in the B-sites of the spinel structure seem to be the active centres, where hydrogen peroxide is formed.  相似文献   

8.
Pan Guo  Chu-guang Zheng 《Fuel》2011,90(5):1840-1846
First-principle calculations based on Density Functional Theory were performed to investigate the binding mechanisms of mercury species on α-Fe2O3 (0 0 1) surface. This is crucial in demonstrating the contribution of α-Fe2O3 existing in fly ash for mercury removal. It has been determined that Hg0 is adsorbed on the α-Fe2O3 (0 0 1) surface with physisorption mechanism. The oxidized forms of HgCl and HgCl2 can be adsorbed on α-Fe2O3 (0 0 1) dissociatively or non-dissociatively. In the case of dissociative adsorption, a close examination of the energy diagram indicates that HgCl may be favorable for the adsorption of Cl and desorption of Hg. The dissociation of HgCl2 with the binding of Cl and HgCl on the surface is possibly the dominant interaction pathway.  相似文献   

9.
Solid acid polymer electrolytes (SAPE) were synthesised using polyvinyl alcohol, potassium iodide and sulphuric acid in different molar ratios by solution cast technique. The temperature dependent nature of electrical conductivity and the impedance of the polymer electrolytes were determined along with the associated activation energy. The electrical conductivity at room temperature was found to be strongly depended on the amorphous nature of the polymers and H2SO4 concentration. The ac (100 Hz to 10 MHz) and dc conductivities of the polymer electrolytes with different H2SO4 concentrations were analyzed. A maximum dc conductivity of 1.05 × 10−3 S cm−1 has been achieved at ambient temperature for electrolytes containing 5 M H2SO4. The frequency and temperature dependent dielectric and electrical modulus properties of the SAPE were studied. The charge transport in the present polymer electrolyte was obtained using Wagner's polarization technique, which demonstrated the charge transport to be mainly due to ions. Using these solid acid polymer electrolytes novel Zn/SAPE/MnO2 solid state batteries were fabricated and their discharge capacity was calculated. An open circuit voltage of 1.758 V was obtained for 5 M H2SO4 based Zn/SAPE/MnO2 battery.  相似文献   

10.
LiNi1/2Mn1/2O2 electrodes with layered structure were synthesized by solid-state reaction between lithium hydroxide and mixed Ni,Mn oxides obtained from co-precipitated Ni,Mn carbonates and hydroxides and freeze-dried Ni,Mn citrates. The temperature of the solid-state reaction was varied between 800 and 950 °C. This method of synthesis allows obtaining oxides characterized with well-crystallized nanometric primary particles bounded in micrometric aggregates. The extent of particle agglomeration is lower for oxides obtained from freeze-dried Ni,Mn citrates. The local Mn4+ surrounding in the transition metal layers was determined by X-band electron paramagnetic resonance (EPR) spectroscopy. It has been found that local cationic distribution is consistent with α,β-type cationic order with some extent of disordering that depends mainly on the precursors used. The electrochemical extraction and insertion of lithium was tested in lithium cells using Step Potential Electrochemical Spectroscopy. The electrochemical performance of LiNi1/2Mn1/2O2 oxides depends on the precursors used, the synthesis temperature and the potential range. The best electrochemical response was established for LiNi1/2Mn1/2O2 prepared from the carbonate precursor at 900 °C. The changes in local environment of Mn4+ ions during electrochemical reaction in both limited and extended potential ranges were discussed on the basis of ex situ EPR experiments.  相似文献   

11.
The layered LiNi0.5Mn0.5O2 was synthesized by wet-chemical method and characterized by X-ray diffraction and SQUID magnetometry. The powders adopted the α-NaFeO2 structure. The ferromagnetism observed below Tc = 140 K is attributed to the linear Ni2+(3a)-O-Mn4+(3b)-O-Ni2+(3a) magnetic paths, from which we derive that 7% of the nickel occupies the (3a) Wyckoff position in place of Li, constituting a Ni2+(3a) defect. The analysis of the magnetic properties in the paramagnetic phase in the framework of the Curie-Weiss law agrees well with the combination of Ni2+ (S = 1) and Mn4+ (S = 3/2) spin-only values. Results of structural and magnetic properties of chemically delithiated sample are consistent with the electronic state Mn4+/Ni4+ and the high-spin configuration for Ni4+ ions. The LiNi0.5Mn0.5O2 electrode sintered at 900 °C delivers a capacity 166 mAh/g at 0.1C rate which is capacity retention of 95%.  相似文献   

12.
We reported here on the synthesis, the crystal structure and the study of the structural changes during the electrochemical cycling of layered LiNi0.1Mn0.1Co0.8O2 positive electrode material. Rietveld refinement analysis shows that this material exhibits almost an ideal α-NaFeO2 structure with practically no lithium-nickel disorder. The SQUID measurements confirm this structural result and evidenced that this material consists of Ni2+, Mn4+ and Co3+ ions.Unlike LiNiO2 and LiCoO2 conventional electrode materials, there was no structural modification upon lithium removal in the whole 0.42 ≤ x ≤1.0 studied composition range. The peaks revealed in the incremental capacity curve were attributed to the successive oxidation of Ni2+ and Co3+ while Mn4+ remains electrochemically inactive.  相似文献   

13.
A combination technique of in situ synchrotron X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) was employed to study the Li1−xNi0.5Co0.25Mn0.25O2 cathode material for Li-ion battery. The Li/Li1−xNi0.5Co0.25Mn0.25O2 cell with x = 0.82 charged to 4.5 V showed the first charge capacity of 225 mAh/g. The X-ray absorption near edge structure (XANES) indicated that the initial valences were +2/+3, +3 and +4 for Ni, Co and Mn, respectively. The main redox reaction during delithiation was achieved by Ni via the reaction Ni2+ → Ni3+ followed by Ni3+ → Ni4+. The oxidation states of Co and Mn remained Co3+ and Mn4+. The bond length of Ni-O decreased drastically, while the Co-O and Mn-O distances exhibited a slight change with the decrease of Li content in the electrode. It was further revealed that all the second shell metal-metal (Ni-M, Co-M and Mn-O) distances decreased due to the oxidation of metal ions. In situ XRD data showed that both a- and c-axes varied with different Li contents in this material system. At the beginning of charge, there was a contraction along the c-axis and a slight expansion along the a-axis. As x reached 0.57, the trend of the variation in c-axis was opposite. The changes of lattice parameters could be explained by the balance between ionic radius and the repulsive force of the layer-structured material.  相似文献   

14.
Li1 + x[Mn0.45Co0.40Ni0.15]O2 spherical cathode materials with different sizes (about 2 and 5 μm) were fabricated by calcining uniform spherical metal carbonate, [Mn0.45Co0.40Ni0.15]CO3 with lithium hydroxide at high temperature. The precursor of spherical metal carbonate, [Mn0.45Co0.40Ni0.15]CO3, was obtained via co-precipitation method at room temperature, which was significantly dependent on synthetic conditions, such as the reaction temperature, the concentration of NH4HCO3, and stirring speed, etc. The optimized condition resulted in [Mn0.45Co0.40Ni0.15]CO3, of which the particle size distribution was uniform and the particle shape was spherical. The final products, Li1 + x[Mn0.45Co0.40Ni0.15]O2, had a well-ordered layered structure and uniform homogeneity. Raman spectroscopy analysis showed the Raman-active species Eg and A1g modes were observed at 488, 473 cm− 1 and 597, 590 cm− 1, respectively, for the obtained spherical cathode materials.  相似文献   

15.
The electronic and local atomic structural characterization of a promising cathode material, LiFe0.4Mn0.6PO4, for a lithium rechargeable battery was performed by in situ X-ray absorption fine structure (XAFS) on both Mn and Fe K-edges. Upon delithiation, the X-ray absorption near edge structure (XANES) spectra analysis showed that the Fe2+/Fe3+ electrochemical reaction was two times faster than that of Mn2+/Mn3+. The Fe and Mn K-edge extended X-ray absorption fine structure (EXAFS) spectra were effectively altered with different spectral behaviors for the local atomic structure near Fe and Mn during delithiation. Alternatively, the EXAFS spectra of LiFePO4 changed significantly and those of LiMnPO4 were constant through all delithiations for the corresponding reference materials of LiFePO4 and LiMnPO4. The present study with XAFS characterization demonstrates that initially delithiated Fe-rich domains at 3.5 V can promote more effective local structural change of the neighboring Mn-rich domains during the next second plateau at 4.1 V, which can ease delithiation in the Mn-rich domains through more flexible reaction of the local structure in the Mn octahedra.  相似文献   

16.
In this study, MgxM2 − xP2O7 (M = Cu, Ni; 0 ≤ x ≤ 2) and Mg3 − yNiy(PO4)2 (0 ≤ y ≤ 3) compositions were synthesized by the chemical coprecipitation method and characterized by X-ray diffraction, UV-vis-NIR spectroscopy and CIE L* a* b* (Commission Internationale de l’Eclairage L* a* b*) parameters measurements.Solid solutions with α-Cu2P2O7 and α-Ni2P2O7 structures and solid solutions with Ni3(PO4)2 structure were obtained from diphosphate and orthophosphate compositions respectively. Isostructurality of α-Ni2P2O7 and α-Mg2P2O7 structures enlarges the compositional range of solid solution formation respect to the MgxCu2 − xP2O7 solid solutions one.The CIE L* a* b* parameters in MgxNi2 − xP2O7 samples were obtained comparable with these parameters in others yellow materials suitable for ceramic pigments. Mg0.5Ni1.5P2O7 composition fired at 800 °C or 1000 °C is the optimal composition to obtain yellow materials with α-diphosphate structure in conditions of this study.  相似文献   

17.
A series of Ba2Mg1−xMnxP4O13 (x = 0-1.0) and Ba1.94Eu0.06Mg1−xMnxP4O13 (x = 0-0.15) phosphors were prepared by conventional solid-state reaction. X-ray powder diffraction (XRD), the photoluminescence spectra, and the decay curves are investigated. XRD analysis shows that the maximum tolerable substitution of Mn2+ for Mg is about 50 mol% in Ba2MgP4O13. Mn2+-singly doped Ba2MgP4O13 shows weak red-luminescence peaked at about 615 nm. The Eu2+/Mn2+ co-doped phosphor emits two distinctive luminescence bands: a blue one centered at 430 nm originating from Eu2+ and a broad red-emitting one peaked at 615 nm from Mn2+ ions. The luminescence of Mn2+ ions can be greatly enhanced with the co-doping of Eu2+ in Ba2MgP4O13. The efficient energy transfer from Eu2+ to Mn2+ is verified by the excitation and emission spectra together with the luminescence decay curves. The emission colors could be tuned from the blue to the red-purple and eventually to the deep red. The resonance-type energy transfer via a dipole-quadrupole interaction mechanism is supported by the decay lifetime data. The energy transfer efficiency and the critical distance are calculated and discussed. The temperature dependent luminescence spectra of the Eu2+/Mn2+ co-doped phosphor show a good thermal stability on quenching effect.  相似文献   

18.
The melt-spinning technique is applied to the preparation of the nanocrystalline and amorphous Mg2Ni-type alloys with nominal compositions of Mg2Ni1−xMnx (x = 0, 0.1, 0.2, 0.3, 0.4). The as-spun alloy ribbons possessing a continuous length, a thickness of about 30 μm and a width of about 25 mm were prepared. The structures of the as-spun alloy ribbons are characterized by XRD and TEM. The electrochemical performances of the as-spun alloy ribbons are measured by an automatic galvanostatic system. The results show that no amorphous structure is detected in the as-spun Mg2Ni alloy, whereas the as-spun Mg2Ni0.6Mn0.4 alloy displays a nanocrystalline and amorphous structure, confirming that the substitution of Mn for Ni notably intensifies the amorphous forming ability of the Mg2Ni-type alloy. The amorphization degree of the as-spun alloys containing Mn increases with increasing spinning rate. The melt spinning also significantly enhances the electrochemical performances such as the discharge capacity and the electrochemical cycle stability of the Mn-containing alloys. Furthermore, the high rate dischargeability (HRD) of the (x ≤ 0.1) alloys increases with an increase in the spinning rate, while for the (x ≥ 0.2) alloys, the HRD exhibits a maximum value at a particular spinning rate, and it varies with the change in Mn contents of the alloys.  相似文献   

19.
Rare-earth ions (Eu3+, Tb3+) activated magnesium calcium bismuth titanate [(MgCa)2Bi4Ti5O20] ceramics were prepared by conventional solid state reaction method for their structural and luminescence properties. By using XRD patterns, the structural properties of ceramic powders have been analyzed. Emission spectrum of Eu3+:(MgCa)2Bi4Ti5O20 ceramic powder has shown strong red emission at 615 nm (5D0 → 7F2) with an excitation wavelength λexci = 393 nm and Tb3+:(MgCa)2Bi4Ti5O20 ceramic powder has shown green emission at 542 nm (5D4 → 7F5) with an excitation wavelength λexci = 376 nm. In addition, from the measurements of scanning electron microscopy (SEM), Fourier transform-infrared (FTIR) and energy dispersive X-ray analysis (EDAX) results the morphology, structure and elemental analysis of these powder ceramics have been studied.  相似文献   

20.
A series of novel single-phase white phosphors Ba1.3Ca0.69−x−ySiO4:0.01Eu2+,xMn2+, yDy3+ were synthesized by the solid-state method. The excitation spectra of these phosphors exhibit a broad band in the range of 260–410 nm, which can meet the application requirements for near-UV LED chips (excited at 350–410 nm). The emission spectra consist of two broad bands positioned around 455 nm and 596 nm, which are assigned to 5d→4f transition of Eu2+, and 4T16A1 transition of Mn2+, respectively. The luminescence intensity of phosphors enhances obviously by doping Dy3+ ions, and the intensity of two bands reaches an optimum when Dy3+ amounts to 2 mol%. In addition, thermoluminescence investigation of phosphor was conducted, getting two shallow trap defects with activation energy of 0.43 eV and 0.45 eV, which demonstrates the energy transfer mechanism of Dy–Eu through the process of hole and electron traps. By precisely tuning the Mn2+ content, an optimized white light with color rendering index (CRI) of Ra=84.3%, correlated color temperature (CCT) of Tc=8416 K and CIE chromaticity coordinates of (0.2941, 0.2937) is generated. The phosphor could be a potential white phosphors for near-UV light emitting diodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号