首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A one‐dimensional heterojunction is fabricated and characterized. This heterojunction comprises a Ni nanowire, a multiwalled carbon nanotube (MWCNT), and an amorphous carbon nanotube (a‐CNT). The three components are in an end‐to‐end configuration, and form two MWCNT contacts, namely a Ni/MWCNT and an MWCNT/a‐CNT contact. The interfacial structures of the two contacts show that multiple outer walls in the MWCNT simultaneously contact the Ni nanowire and the a‐CNT, and can simultaneously participate in electrical transport. By investigating the electrical‐transport properties of the heterojunctions, the two contacts to the MWCNT in every heterojunction are found to behave as two diodes connected in series face‐to‐face, at least one of which exhibits the characteristics of a nearly ideal Schottky diode and obeys thermionic‐emission theory, wherein only the image force lowers the Schottky barrier. The appearance of this type of nearly ideal diode is attributed to the good contacts to the multiple outer walls of the MWCNTs realized by the heterojunctions' structures.  相似文献   

2.
A novel solution spinning method to produce highly conducting carbon nanotube (CNT) biofibers is reported. In this process, carbon nanotubes are dispersed using biomolecules such as hyaluronic acid, chitosan, and DNA, and these dispersions are used as spinning solutions. Unlike previous reports in which a polymer binder is used in the coagulation bath, these dispersions can be converted into fibers simply by altering the nature of the coagulation bath via pH control, use of a crosslinking agent, or use of a biomolecule‐precipitating solvent system. With strength comparable to most reported CNT fibers to date, these CNT biofibers demonstrate superior electrical conductivities. Cell culture experiments are performed to investigate the cytotoxicity of these fibers. This novel fiber spinning approach could simplify methodologies for creating electrically conducting and biocompatible platforms for a variety of biomedical applications, particularly in those systems where the application of an electrical field is advantageous?for example, in directed nerve and/or muscle repair.  相似文献   

3.
A method is presented for dispersing ropes or bundles of single‐walled carbon nanotubes (RCNTs) in a polycarbonate (PC) matrix. Films of PC/RCNT composites are produced, with thicknesses ranging from 10 to 60 μm, and containing small concentrations (0.06–0.25 wt.‐%) of RCNT. Our process is based on a unique method of hot casting, annealing, and drying from dichlorobenzene solution. A wet annealing prior to complete drying yields a uniform and transparent film. Despite the low RCNT loading, scanning electron microscopy (SEM) analysis of the films after fracture reveals that the RCNTs form an entangled network throughout the film, which is a key requirement for enhanced properties. An increase of up to 30 % in the Young's modulus, as compared to PC, results with this method of composite fabrication.  相似文献   

4.
A new method of laser‐induced lithography for direct writing of carbon on a glass surface is described, in which deposition occurs from a transparent precursor solution. At the glass–solution interface where the laser spot is focused, a micro‐explosion process takes place, leading to the deposition of pure carbon on the glass surface. Transmission electron microscopy (TEM) analysis shows two distinct co‐existing phases. The dominant one shows a mottled morphology with diffraction typical of cubic (sp3) diamond. The other region shows an ordered array of graphene sheets with diffraction pattern typical of sp2‐bonded carbon. The sp3 crystallites range in size from 9 to 30 Å and are scattered randomly throughout the sample. A UV Raman spectrum shows a broad band at the location of the expected diamond peak, together with a peak corresponding to the graphite region. We conclude that the patterned carbon is composed of a mixture of nanocrystalline sp3 and sp2 carbon forms.  相似文献   

5.
The fabrication of single‐walled carbon nanotube (CNT) fibers containing (salmon) DNA has been demonstrated. The DNA material has been found to be adequate for dispersing relatively large concentrations (up to 1 % by weight) of carbon nanotubes. These dispersions are better suited for fiber spinning than previously studied dispersions based on conventional surfactants, such as sodium dodecyl sulfate (SDS). The DNA‐containing fibers were less conductive than the fibers based on SDS, but they were significantly stronger. Considerably increased conductivity was obtained by thermally annealing the CNT/DNA fibers, a process accompanied by a loss in mechanical strength. Smaller improvements in conductivity could be introduced by annealing the carbon nanotubes before fiber production, with no alteration of the fiber mechanical properties. Those CNT/DNA fibers that were mechanically strong and conductive also exhibited good electrochemical behavior and useful capacitance values (up to 7.2 F g–1).  相似文献   

6.
We have investigated the key factors determining the performance of supercapacitors constructed using single‐walled carbon nanotube (SWNT) electrodes. Several parameters, such as composition of the binder, annealing temperature, type of current collector, charging time, and discharging current density have been optimized for the best performance of the supercapacitor with respect to energy density and power density. We find a maximum specific capacitance of 180 F/g and a measured power density of 20 kW/kg at energy densities in the range from 7 to 6.5 Wh/kg at 0.9 V in a solution of 7.5 N KOH (the currently available supercapacitors have energy densities in the range 6–7 Wh/kg and power density in the range 0.2–5 kW/kg at 2.3 V in non‐aqueous solvents).  相似文献   

7.
The coating of highly porous Bioglass® based 3D scaffolds with multi‐walled carbon nanotubes (CNT) was investigated. Foam like Bioglass® scaffolds were fabricated by the replica technique and electrophoretic deposition was used to deposit homogeneous layers of CNT throughout the scaffold pore structure. The optimal experimental conditions were determined to be: applied voltage 15 V and deposition time 20 minutes, utilizing a concentrated aqueous suspension of CNT with addition of a surfactant and iodine. The scaffold pore structure remained invariant after the CNT coating, as assessed by SEM. The incorporation of CNTs induced a nanostructured internal surface of the pores which is thought to be beneficial for osteoblast cell attachment and proliferation. Bioactivity of the scaffolds was assessed by immersion studies in simulated body fluid (SBF) for periods of up to 2 weeks and the subsequent determination of hydroxyapatite (HA) formation. The presence of CNTs can enhance the bioactive behaviour of the scaffolds since CNTs can serve as template for the ordered formation of a nanostructured HA layers, which does not occur on uncoated Bioglass® surfaces.  相似文献   

8.
Double‐walled carbon nanotubes (DWCNTs) are studied using in‐situ visible–near‐infrared (vis‐NIR) and in‐situ Raman spectroelectrochemistry. Electrochemical vis‐NIR spectroscopy reveals a complex picture of DWCNTs due to the overlap of the features of the inner and outer tubes and possible optical transitions, which are not predicted by the simple tight‐binding model. The optical transitions are bleached upon electrochemical doping. This is qualitatively understood to be a consequence of the Fermi‐level shift by the applied potential relative to the van Hove singularity. In‐situ Raman spectra are quenched by the applied cathodic/anodic potentials due to the loss of resonance by electrochemical charging. The electrochemical tuning of Raman spectra proceeds distinctly for inner and outer tubes. While the bands of outer tubes rapidly follow the potential change, the features of inner tubes respond relatively slowly to electrochemical perturbations. The Raman D‐mode of DWCNTs was found to be bifurcated upon electrochemical charging, which is similar to the behavior of the tangential displacement mode. Ionic liquids are good electrolytes for the spectroelectrochemistry of DWCNTs, even at extreme applied potentials. They allow the deconvolution of the tangential modes of the inner and outer tubes at both cathodic and anodic doping.  相似文献   

9.
The temperature dependence of the electrical characteristics of field‐effect transistors (FETs) based on polymer‐sorted, large‐diameter semiconducting carbon nanotube networks is investigated. The temperature dependences of both the carrier mobility and the source‐drain current in the range of 78 K to 293 K indicate thermally activated, but non‐Arrhenius, charge transport. The hysteresis in the transfer characteristics of FETs shows a simultaneous reduction with decreasing temperature. The hysteresis appears to stem from screening of charges that are transferred from the carbon nanotubes to traps at the surface of the gate dielectric. The temperature dependence of sheet resistance of the carbon nanotube networks, extracted from FET characteristics at constant carrier concentration, specifies fluctuation‐induced tunneling as the mechanism responsible for charge transport, with an activation energy that is dependent on film thickness. Our study indicates inter‐tube tunneling to be the bottleneck and implicates the role of the polymer coating in influencing charge transport in polymer‐sorted carbon nanotube networks.  相似文献   

10.
A microwave‐induced controlled method for the purification of single‐walled carbon nanotubes (SWCNTs) by removing residual metal catalysts and carbonaceous impurities is reported. Compared to conventional strong acid treatment, this one‐step method uses dilute acids and complexing agents and reduces the reaction times to the order of minutes. Furthermore, the SWCNTs retain their chemical and physical properties and are not functionalized. Electron microscopy, Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and atomic absorption (AA) spectrometry studies were used to characterize the purified SWCNTs.  相似文献   

11.
High‐density polyethylene coated multiwalled carbon nanotubes (c‐MWNTs) and multiwalled carbon nanotubes (MWNTs) have been dispersed into an ethylene vinyl acetate (EVA) copolymer by mechanical kneading. The effect of c‐MWNTs on tensile properties, thermo‐oxidative degradation, and fire behavior has been studied in comparison with virgin EVA and EVA/MWNTs nanocomposites. Due to the better dispersion of the coated nanotubes, the incorporation of 3 wt % of c‐MWNTs leads to an increase of the Young's modulus, the cohesion of the combustion residues, and a decrease of the peak heat‐release rate.  相似文献   

12.
Growing aligned carbon nanotubes (CNTs) on electrically conducting and/or optically transparent materials is potentially useful for accessing CNT properties through electrical and optical stimuli. Here, we report a new approach to growing aligned bundles of multiwalled CNTs on a porous back contact of optically transparent and electrically conducting indium tin oxide (ITO) films on silicon and silica substrates without the use of a predeposited catalyst. CNTs grow from a xylene/ferrocene mixture, which traverses through the pores in the thin ITO film, and decomposes on an interfacial silica layer formed via the reaction between ITO and the Si substrate. The CNTs inherit the topography of the silica substrate, enabling back‐contact formation for CNTs grown in any predetermined orientation. These features can be harnessed to form CNT contacts with other substrate materials which, upon reduction by Si, results in a conducting interfacial layer. The ITO‐contacted CNTs exhibit thermally activated ohmic behavior across a 100 ± 10 meV barrier at electric fields below ~ 100 V cm–1 due to carrier transport through the outermost shells of the CNTs. At higher electric fields, we observe superlinear behavior due to carrier tunneling and transport through the inner graphene shells. Our findings open up new possibilities for integrating CNTs with Si‐based device technologies.  相似文献   

13.
Numerous applications, from molecular electronics to super‐strong composites, have been suggested for carbon nanotubes. Despite this promise, difficulty in assembling raw carbon nanotubes into functional structures is a deterrent for applications. In contrast, biological materials have evolved to self‐assemble, and the lessons of their self‐assembly can be applied to synthetic materials such as carbon nanotubes. Here we show that single‐walled carbon nanotubes, coated with a designed amphiphilic peptide, can be assembled into ordered hierarchical structures. This novel methodology offers a new route for controlling the physical properties of nanotube systems at all length scales from the nano‐ to the macroscale. Moreover, this technique is not limited to assembling carbon nanotubes, and could be modified to serve as a general procedure for controllably assembling other nanostructures into functional materials.  相似文献   

14.
A new dispersant for stabilization of single wall carbon nanotubes (SWNTs) in water that simultaneously utilizes three different dispersion or stabilization mechanisms: surfactant adsorption, polymeric wrapping, and Coulomb repulsive interaction, has been demonstrated. The new dispersant, a charged rod‐like nanoparticle (cROD), is a cylindrical micelle wrapped by negatively charged polymers which is fabricated by the aqueous free radical polymerization of a polymerizable cationic surfactant, cetyltrimethylammonium 4‐vinylbenzoate (CTVB), in the presence of sodium 4‐styrenesulfonate (NaSS). The surface charge density of the cRODs is controlled by varying the concentration of NaSS. Dispersions of SWNTs are obtained by sonicating a mixture of SWNTs and cROD in water, followed by ultra‐centrifugation and decanting. While the cRODs with neutral or low surface change densities (0 and 5 mol % NaSS) result in very low dispersion power and poor stability, the cRODs with high surface charge densities (15, 25, and 40 mol % NaSS) produce excellent dispersions with SWNT concentration as high as 437 mg L?1 and long term stability. The sharp van Hove transition peaks of the cROD assisted SWNT dispersions indicate the presence of individually isolated SWNTs. Atomic force microscopy and small angle neutron scattering analysis show that the dominant encapsulation structure of the cROD assisted SWNTs is surfactant assisted polymeric wrapping. SWNTs dispersed by the cRODs can be fully dried and easily re‐dispersed in water, providing enhanced processibility of SWNTs.  相似文献   

15.
Multi‐walled carbon nanotubes (MWCNTs) have long been anticipated as candidates for electrical components in an increasingly miniaturized electronics industry due to their inherent electrical properties. It is possible to manipulate and control these properties by introducing dopants such as N, B, and P. Although some current‐induced structural changes in MWCNTs have been observed, no systematic study has been carried out to explore the correlation of changes in the internal structure with the electronic behavior of doped‐MWCNTs in terms of the current densities present. In situ transmission electron microscopy (TEM) investigations are presented here of individual, N‐doped MWNCT (N‐MWCNTs) using the in situ TEM/scanning tunneling microscopy (TEM/STM) Nanofactory© holder. It is observed for the first time that N‐MWCNTs not only undergo current‐induced structural transformation; i.e., from the typical bamboo structure of N‐MWCNTs to the stacked cones, but also—and most importantly—the complete removal of the dopant causes a significant change in the electronic behavior. This has serious implications for the use of doped CNTs as electronic components, especially since tremendous efforts are being made to synthesize CNTs with controlled dopant concentrations.  相似文献   

16.
Correlated quantum‐chemical calculations are applied to analyze the amplitude of the electronic‐transfer integrals that describe charge transport in interacting carbon nanotubes (CNTs) by investigating the influences of: i) the relative positions of the CNTs, ii) the size of the CNTs, and iii) their chemical impurities. Our results indicate that the mobility of the charge carrier is extremely sensitive to the molecular packing and the presence of chemical impurities. The largest splitting for the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels is in the case of perfectly cofacial conformations where hexagons face hexagons in the dimer structure. We found that the diameter of the CNT determines the type of transporting carrier: for CNTs with large diameters hole transport dominates, while for thin CNTs electron transport dominates. In general, the carrier mobility for the perfect CNTs (n ≥ 3) is less pronounced than that of C60 due to their relatively small strain. B‐ and N‐doped CNTs exhibit considerably larger mobilities owing to the possibility of metallic behavior. These results provide a plausible explanation for the high mobility found experimentally in a field‐effect transistor (FET) made from a large‐area, well‐aligned CNT array. In addition, these hole‐rich and electron‐rich dopants imply potential applications in nanoelectronics.  相似文献   

17.
Recent advances in fabricating controlled‐morphology vertically aligned carbon nanotubes (VA‐CNTs) with ultrahigh volume fraction create unique opportunities for markedly improving the electromechanical performance of ionic polymer conductor network composite (IPCNC) actuators. Continuous paths through inter‐VA‐CNT channels allow fast ion transport, and high electrical conduction of the aligned CNTs in the composite electrodes lead to fast device actuation speed (>10% strain/second). One critical issue in developing advanced actuator materials is how to suppress the strain that does not contribute to the actuation (unwanted strain) thereby reducing actuation efficiency. Here, experiments demonstrate that the VA‐CNTs give an anisotropic elastic response in the composite electrodes, which suppresses the unwanted strain and markedly enhances the actuation strain (>8% strain under 4 V). The results reported here suggest pathways for optimizing the electrode morphology in IPCNCs using ultrahigh volume fraction VA‐CNTs to further enhanced performance.  相似文献   

18.
An important advancement towards the realization of miniaturized and fully integrated vacuum electronic devices will be the development of on‐chip integrated electron sources with stable and reproducible performances. Here, the fabrication of high‐performance on‐chip thermionic electron micro‐emitter arrays is demonstrated by exploiting suspended super‐aligned carbon nanotube films as thermionic filaments. For single micro‐emitter, an electron emission current up to ≈20 µA and density as high as ≈1.33 A cm?2 are obtained at a low‐driven voltage of 3.9 V. The turn‐on/off time of a single micro‐emitter is measured to be less than 1 µs. Particularly, stable (±1.2% emission current fluctuation for 30 min) and reproducible (±0.2% driven voltage variation over 27 cycles) electron emission have been experimentally observed under a low vacuum of ≈5 × 10?4 Pa. Even under a rough vacuum of ≈10?1 Pa, an impressive reproducibility (±2% driven voltage variation over 20 cycles) is obtained. Moreover, emission performances of micro‐emitter arrays are found to exhibit good uniformity. The outstanding stability, reproducibility, and uniformity of the thermionic electron micro‐emitter arrays imply their promising applications as on‐chip integrated electron sources.  相似文献   

19.
Development of a versatile method for incorporating conductive materials into textiles could enable advances in wearable electronics and smart textiles. One area of critical importance is the detection of chemicals in the environment for security and industrial process monitoring. Here, the fabrication of a flexible, sensor material based on functionalized multi‐walled carbon nanotube (MWNT) films on a porous electrospun fiber mat for real‐time detection of a nerve agent simulant is reported. The material is constructed by layer‐by‐layer (LbL) assembly of MWNTs with opposite charges, creating multilayer films of MWNTs without binder. The vacuum‐assisted spray‐LbL process enables conformal coatings of nanostructured MWNT films on individual electrospun fibers throughout the bulk of the mat with controlled loading and electrical conductivity. A thiourea‐based receptor is covalently attached to the primary amine groups on the MWNT films to enhance the sensing response to dimethyl methylphosphonate (DMMP), a simulant for sarin nerve agent. Chemiresistive sensors based on the engineered textiles display reversible responses and detection limits for DMMP as low as 10 ppb in the aqueous phase and 5 ppm in the vapor phase. This fabrication technique provides a versatile and easily scalable strategy for incorporating conformal MWNT films into three‐dimensional substrates for numerous applications.  相似文献   

20.
Here, a pyrolytically controlled antioxidizing photosynthesis coenzyme, β‐Nicotinamide adenine dinucleotide, reduced dipotassium salt (NADH) for a stable n‐type dopant for carbon nanotube (CNT) transistors is proposed. A strong electron transfer from NADH, mainly nicotinamide, to CNTs takes place during pyrolysis so that not only the type conversion from p‐type to n‐type is realized with 100% of reproducibility but also the on/off ratio of the transistor is significantly improved by increasing on‐current and/or decreasing off‐current. The device was stable up to a few months with negligible current changes under ambient conditions. The n‐type characteristics were completely recovered to an initial doping level after reheat treatment of the device.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号