首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Grazing incidence X‐ray scattering (GIXS) is used to characterize the morphology of poly(3‐hexylthiophene) (P3HT)–phenyl‐C61‐butyric acid methyl ester (PCBM) thin film bulk heterojunction (BHJ) blends as a function of thermal annealing temperature, from room temperature to 220 °C. A custom‐built heating chamber for in situ GIXS studies allows for the morphological characterization of thin films at elevated temperatures. Films annealed with a thermal gradient allow for the rapid investigation of the morphology over a range of temperatures that corroborate the results of the in situ experiments. Using these techniques the following are observed: the melting points of each component; an increase in the P3HT coherence length with annealing below the P3HT melting temperature; the formation of well‐oriented P3HT crystallites with the (100) plane parallel to the substrate, when cooled from the melt; and the cold crystallization of PCBM associated with the PCBM glass transition temperature. The incorporation of these materials into BHJ blends affects the nature of these transitions as a function of blend ratio. These results provide a deeper understanding of the physics of how thermal annealing affects the morphology of polymer–fullerene BHJ blends and provides tools to manipulate the blend morphology in order to develop high‐performance organic solar cell devices.  相似文献   

2.
Changes in the nanoscale morphologies of the blend films of poly (3‐hexylthiophene) (P3HT) and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM), for high‐performance bulk‐heterojunction (BHJ) solar cells, are compared and investigated for two annealing treatments with different morphology evolution time scales, having special consideration for the diffusion and aggregation of PCBM molecules. An annealing condition with relatively fast diffusion and aggregation of the PCBM molecules during P3HT crystallization results in poor BHJ morphology because of prevention of the formation of the more elongated P3HT crystals. However, an annealing condition, accelerating PCBM diffusion after the formation of a well‐ordered morphology, results in a relatively stable morphology with less destruction of crystalline P3HT. Based on these results, an effective strategy for determining an optimized annealing treatment is suggested that considers the effect of relative kinetics on the crystallization of the components for a blend film with a new BHJ materials pair, upon which BHJ solar cells are based.  相似文献   

3.
A fundamental understanding of the relationship between the bulk morphology and device performance is required for the further development of bulk heterojunction organic solar cells. Here, non‐optimized (chloroform cast) and nearly optimized (solvent‐annealed o‐dichlorobenzene cast) P3HT:PCBM blend films treated over a range of annealing temperatures are studied via optical and photovoltaic device measurements. Parameters related to the P3HT aggregate morphology in the blend are obtained through a recently established analytical model developed by F. C. Spano for the absorption of weakly interacting H‐aggregates. Thermally induced changes are related to the glass transition range of the blend. In the chloroform prepared devices, the improvement in device efficiency upon annealing within the glass transition range can be attributed to the growth of P3HT aggregates, an overall increase in the percentage of chain crystallinity, and a concurrent increase in the hole mobilities. Films treated above the glass transition range show an increase in efficiency and fill factor not only associated with the change in chain crystallinity, but also with a decrease in the energetic disorder. On the other hand, the properties of the P3HT phase in the solvent‐annealed o‐dichlorobenzene cast blends are almost indistinguishable from those of the corresponding pristine P3HT layer and are only weakly affected by thermal annealing. Apparently, slow drying of the blend allows the P3HT chains to crystallize into large domains with low degrees of intra‐ and interchain disorder. This morphology appears to be most favorable for the efficient generation and extraction of charges.  相似文献   

4.
A new ordered structure of the C60 derivative PCBM is obtained in thin films based on the blend PCBM:P3HT, as detailed by Swinnen, Manca, and co‐workers on p. 760. Needlelike crystalline PCBM structures, whose dimensions and spatial distribution ca be tuned by adjusting the blend ratio and annealing conditions, are formed. In typical solar‐cell applications of these blended films, these results indicate that during long‐term operation under normal conditions (50–70 °C) morphology changes and a decrease in cell performance could occur. A new ordered structure of the C60 derivative PCBM ([6‐6]‐phenyl C61‐butyric acid methyl ester) is obtained in thin films based on the blend PCBM:regioregular P3HT (poly(3‐hexylthiophene)). Rapid formation of needlelike crystalline PCBM structures of a few micrometers up to 100 μm in size is demonstrated by submitting the blended thin films to an appropriate thermal treatment. These structures can grow out to a 2D network of PCBM needles and, in specific cases, to spectacular PCBM fans. Key parameters to tune the dimensions and spatial distribution of the PCBM needles are blend ratio and annealing conditions. The as‐obtained blended films and crystals are probed using atomic force microscopy, transmission electron microscopy, selected area electron diffraction, optical microscopy, and confocal fluorescence microscopy. Based on the analytical results, the growth mechanism of the PCBM structures within the film is described in terms of diffusion of PCBM towards the PCBM crystals, leaving highly crystalline P3HT behind in the surrounding matrix.  相似文献   

5.
We use spectroscopic ellipsometry to study the evolution of structure and optoelectronic properties of poly(3‐hexylthiophene) (P3HT) and [6,6]‐phenyl C61‐butyric acid methyl ester (PCBM) photovoltaic thin film blends upon thermal annealing. Four distinct processes are identified: the evaporation of residual solvent above the glass transition temperature of the blend, the relaxation of non‐equilibrium molecular conformation formed through spin‐casting, the crystallization of both P3HT and PCBM components, and the phase separation of the P3HT and PCBM domains. Devices annealed at 150 °C for between 10 and 60 min exhibit an average power conversion efficiency of around 4.0%. We find that the rate at which the P3HT/PCBM is returned to room temperature is more important in determining device efficiency than the duration of the isothermal annealing process. We conclude that the rapid quenching of a film from the annealing temperature to room temperature hampers the crystallization of the P3HT and can trap non‐equilibrium morphological states. Such states apparently impact on device short circuit current, fill factor and, thus, operational efficiency.  相似文献   

6.
The influence of various thermal treatment steps on the morphology and the photoconductive properties of a non‐contacted, 50 nm thick blend (50:50 wt.‐%) of [6,6]‐phenyl C61‐butyric acid methyl ester (PCBM) and poly(3‐hexyl thiophene) (P3HT) spin‐coated from chloroform has been studied using transmission electron microscopy (TEM) and the electrodeless time‐resolved microwave conductivity technique. After annealing the film for 5 min at 80 °C, TEM images show the formation of crystalline fibrils of P3HT due to a more ordered packing of the polymer chains. The thermal treatment results in a large increase of the photoconductivity, due to an enhancement of the hole mobility in these crystalline P3HT domains from 0.0056 cm2 V–1 s –1 for the non‐annealed sample to 0.044 cm2 V–1 s –1 for the sample annealed at 80 °C. In contrast, the temporal shape of the photoconductivity, with typical decay half‐times, τ1/2, of 1 μs for the lowest excitation intensities, is unaffected by the temperature treatment. Further annealing of the sample at 130 °C results in the formation of three different substructures within the heterojunction: a PCBM:P3HT blend with PCBM‐rich clusters, a region depleted of PCBM, and large PCBM single crystals. Only a minor increase in the amplitude, but a tenfold rise of the decay time of the photoconductivity, is observed. This is explained by the formation of PCBM‐rich clusters and large PCBM single crystals, resulting in an increased diffusional escape probability for mobile charge carriers and hence reduced recombination.  相似文献   

7.
The effect of controlled thermal annealing on charge transport and photogeneration in bulk‐heterojunction solar cells made from blend films of regioregular poly(3‐hexylthiophene) (P3HT) and methanofullerene (PCBM) has been studied. With respect to the charge transport, it is demonstrated that the electron mobility dominates the transport of the cell, varying from 10–8 m2 V–1 s–1 in as‐cast devices to ≈3 × 10–7 m2 V–1 s–1 after thermal annealing. The hole mobility in the P3HT phase of the blend is dramatically affected by thermal annealing. It increases by more than three orders of magnitude, to reach a value of up to ≈ 2 × 10–8 m2 V–1 s–1 after the annealing process, as a result of an improved crystallinity of the film. Moreover, upon annealing the absorption spectrum of P3HT:PCBM blends undergo a strong red‐shift, improving the spectral overlap with solar emission, which results in an increase of more than 60 % in the rate of charge‐carrier generation. Subsequently, the experimental electron and hole mobilities are used to study the photocurrent generation in P3HT:PCBM devices as a function of annealing temperature. The results indicate that the most important factor leading to a strong enhancement of the efficiency, compared with non‐annealed devices, is the increase of the hole mobility in the P3HT phase of the blend. Furthermore, numerical simulations indicate that under short‐circuit conditions the dissociation efficiency of bound electron–hole pairs at the donor/acceptor interface is close to 90 %, which explains the large quantum efficiencies measured in P3HT:PCBM blends.  相似文献   

8.
The performance of polymer solar cells (PSC) strongly depends on the 3D morphological organization of the donor and acceptor compounds within the bulk heterojunction active layer. The technique of electron tomography is a powerful tool for studying 3D morphology of the layers composed of poly(3‐hexylthiophene) (P3HT) and a fullerene derivative ([6,6]‐phenyl‐C61‐butyric acid methyl ester; PCBM), especially to quantify the amount and distribution of fibrillar P3HT nanocrystals throughout the volume of the active layer. In this study, electron tomography is used to characterize P3HT/PCBM layers with different blend compositions, both before and after thermal annealing. The power conversion efficiency of the corresponding PSCs is strongly dependent on the overall crystallinity of P3HT and the way P3HT crystals are distributed throughout the thickness of the active layer.  相似文献   

9.
A high‐resolution near‐field spectroscopic mapping technique is successfully applied to investigate the influence of thermal annealing on the morphology of a poly(3‐hexylthiophene) and [6,6]‐penyl‐C61 butyric acid methyl ester (P3HT:PCBM) blend film. Based on the simultaneously recorded morphological and spectroscopic information, the interplay among the blend film morphology, the local P3HT:PCBM molecular distribution, and the P3HT photoluminescence (PL) quenching efficiency are systematically discussed. The PL and Raman signals of the electron donor (P3HT) and acceptor (PCBM) are probed at an optical resolution of approximately 10 nm, which allows the chemical nature of the different domains to be identified directly. In addition, the local PL quenching efficiency, which is related to the electron transfer from P3HT to PCBM, is quantitatively revealed. From these experimental results, it is proposed that high‐resolution near‐field spectroscopic imaging is capable of mapping the local chemical composition and photophysics of the P3HT:PCBM blends on a scale of a few nanometers.  相似文献   

10.
[6,6]‐phenyl‐C‐61‐butyric acid methyl ester (PCBM) and poly(3‐hexylthiophene) (P3HT) are the most widely used acceptor and donor materials, respectively, in polymer solar cells (PSCs). However, the low LUMO (lowest unoccupied molecular orbital) energy level of PCBM limits the open circuit voltage (Voc) of the PSCs based on P3HT. Herein a simple, low‐cost and effective approach of modifying PCBM and improving its absorption is reported which can be extended to all fullerene derivatives with an ester structure. In particular, PCBM is hydrolyzed to carboxylic acid and then converted to the corresponding carbonyl chloride. The latter is condensed with 4‐nitro‐4’‐hydroxy‐α‐cyanostilbene to afford the modified fullerene F . It is more soluble than PCBM in common organic solvents due to the increase of the organic moiety. Both solutions and thin films of F show stronger absorption than PCBM in the range of 250–900 nm. The electrochemical properties and electronic energy levels of F and PCBM are measured by cyclic voltammetry. The LUMO energy level of F is 0.25 eV higher than that of PCBM. The PSCs based on P3HT with F as an acceptor shows a higher Voc of 0.86 V and a short circuit current (Jsc) of 8.5 mA cm?2, resulting in a power conversion efficiency (PCE) of 4.23%, while the PSC based on P3HT:PCBM shows a PCE of about 2.93% under the same conditions. The results indicate that the modified PCBM, i.e., F , is an excellent acceptor for PSC based on bulk heterojunction active layers. A maximum overall PCE of 5.25% is achieved with the PSC based on the P3HT: F blend deposited from a mixture of solvents (chloroform/acetone) and subsequent thermal annealing at 120 °C.  相似文献   

11.
We investigate thin poly(3‐hexylthiophene‐2,5‐diyl)/[6,6]‐phenyl C61 butyric acid methyl ester (P3HT/PCBM) films, which are widely used as active layers in plastic solar cells. Their structural properties are studied by grazing‐incidence X‐ray diffraction (XRD). The size and the orientation of crystalline P3HT nanodomains within the films are determined. PCBM crystallites are not detected in thin films by XRD. Upon annealing, the P3HT crystallinity increases, leading to an increase in the optical absorption and spectral photocurrent in the low‐photon‐energy region. As a consequence, the efficiency of P3HT/PCBM solar cells is significantly increased. A direct relation between efficiency and P3HT crystallinity is demonstrated.  相似文献   

12.
An effective method for preparing poly(3-hexylthiophene) (P3HT) coated graphene oxide (GO), (P-GO), based on an ethanol mediated mixing and solvent evaporation method is described. P-GO exhibits good dispersibility in the non-polar solvent o-dichlorobenzene (DCB) allowing the preparation of polymer blend composites. P-GO was doped into P3HT: PCBM blends by solution mixing and shown to facilitate phase separation of P3HT and PCBM in P3HT: PCBM blend films to achieve a more optimum morphology for polymer photovoltaic cells. Bulk heterojunction P3HT: PCBM solar cells exhibit ∼18% power conversion efficiency enhancement in the presence of P-GO.  相似文献   

13.
The self‐organization of the polymer in solar cells based on regioregular poly(3‐hexylthiophene) (RR‐P3HT):[6,6]‐phenyl C61‐butyric acid methyl ester (PCBM) is studied systematically as a function of the spin‐coating time ts (varied from 20–80 s), which controls the solvent annealing time ta, the time taken by the solvent to dry after the spin‐coating process. These blend films are characterized by photoluminescence spectroscopy, UV‐vis absorption spectroscopy, atomic force microscopy, and grazing incidence X‐ray diffraction (GIXRD) measurements. The results indicate that the π‐conjugated structure of RR‐P3HT in the films is optimally developed when ta is greater than 1 min (ts ~ 50 s). For t s < 50 s, both the short‐circuit current (JSC) and the power conversion efficiency (PCE) of the corresponding polymer solar cells show a plateau region, whereas for 50 < ts < 55 s, the JSC and PCE values are significantly decreased, suggesting that there is a major change in the ordering of the polymer in this time window. The PCE decreases from 3.6 % for a film with a highly ordered π‐conjugated structure of RR‐P3HT to 1.2 % for a less‐ordered film. GIXRD results confirm the change in the ordering of the polymer. In particular, the incident photon‐to‐electron conversion efficiency spectrum of the less‐ordered solar cell shows a clear loss in both the overall magnitude and the long‐wavelength response. The solvent annealing effect is also studied for devices with different concentrations of PCBM (PCBM concentrations ranging from 25 to 67 wt %). Under “solvent annealing” conditions, the polymer is seen to be ordered even at 67 wt % PCBM loading. The open‐circuit voltage (VOC) is also affected by the ordering of the polymer and the PCBM loading in the active layer.  相似文献   

14.
The successful design and synthesis of two styryl‐functionalized fullerene derivatives, [6,6]‐phenyl‐C61‐butyric acid styryl dendron ester (PCBSD) and [6,6]‐phenyl‐C61‐butyric acid styryl ester (PCBS) is presented. The polymerizable PCBS or PCBSD materials are incorporated into a poly(3‐hexylthiophene) (P3HT):[6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) blend to form an active layer of ternary blend. The blending systems are first thermally annealed at 110 C for 10 min to induce optimal morphology, followed by heating at 150 C for 10 min to trigger the in situ polymerization of styrene groups. Through chemical crosslinking of PCBSD, the initial morphology of the blend (P3HT:PCBM:PCBSD = 6:5:1 in weight) can be effectively fixed and stably preserved. The device based on this blend shows extremely stable device characteristics, delivering an average power conversion efficiency (PCE) of 3.7% during long‐term thermal treatment. By molecular engineering to reduce the insulating portion, PCBS with higher C60 content (71 wt%) possesses better electron‐transport properties than PCBSD (58 wt%). Encouragingly, at a low doping concentration of PCBS in the blend (P3HT:PCBM:PCBS = 6:5:1 in weight), linear‐polymerized PCBS can stabilize the morphology against thermal heating. This device exhibits more balanced charge mobility to achieve an average PCE of 3.8% over 25 h heating at 150 °C.  相似文献   

15.
This study addresses two key issues, stability and efficiency, of polymer solar cells based on blended poly(3‐hexylthiophene) (P3HT) and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) by demonstrating a film‐forming process that involves low‐temperature drying (?5 °C) and subsequent annealing of the active layer. The low‐temperature process achieves 4.70% power conversion efficiency (PCE) and ~1250 h storage half‐life at 65 °C, which are significant improvements over the 3.39% PCE and ~143 h half‐life of the regular room‐temperature process. The improvements are attributed to the enhanced nucleation of P3HT crystallites as well as the minimized separation of the P3HT and PCBM phases at the low drying temperature, which upon post‐drying annealing results in a morphology consisting of small PCBM‐rich domains interspersed within a densely interconnected P3HT crystal network. This morphology provides ample bulk‐heterojunction area for charge generation while allowing for facile charge transport; moreover, the P3HT crystal network serves as an immobile frame at heating temperatures less than the melting point (Tm) of P3HT, thus preventing PCBM/P3HT phase separation and the corresponding device degradation.  相似文献   

16.
The phase segregation in P3HT:PCBM blend films has been investigated from an experimental and theoretical viewpoint. Optical microscopy, atomic force microscopy, scanning electron microscopy and X-ray diffraction show that thermal annealing of P3HT:PCBM blend films leads to the formation of PCBM aggregates. These aggregates are composed of dense randomly packed ∼50 nm PCBM crystallites with an overall aggregate density of ∼0.85 g cm−3. By applying the critical radius of nucleation for PCBM and the Stokes-Einstein equation for mobility of PCBM in a P3HT matrix, a model is developed which explains the formation of both crystallites and aggregates.  相似文献   

17.
A new concept to stabilize the morphology of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blend through H-bond formation by using a hydroxyl group end-functionalized P3HT (HOC-P3HT-COH) as a compatibilizer is presented. Domain size of the PCBM crystals in the annealed P3HT/PCBM film is diminished with addition of HOC-P3HT-COH. Surface roughness of the P3HT/PCBM film also becomes smoother with addition of HOC-P3HT-COH. Thermal stability of solar cell device is improved significantly through the H-bond formation between HOC-P3HT-COH and PCBM. A high performance and thermal stable polymer solar cell with 4.06% power conversion efficiency under AM1.5G irradiation is fabricated with 5% HOC-P3HT-COH in P3HT/PCBM layer.  相似文献   

18.
The impact of controlled solvent vapor exposure on the morphology, structural evolution, and function of solvent‐processed poly(3‐hexylthiophene):[6,6]‐phenyl‐C61‐butyric acid methyl ester (P3HT:PCBM) bilayers is presented. Grazing incident wide angle X‐ray scattering (GIWAXS) shows that the crystallization of P3HT increases with solvent exposure, while neutron reflectivity shows that P3HT simultaneously diffuses into PCBM, indicating that an initial bilayer structure evolves into a bulk heterojunction structure. Small angle neutron scattering (SANS) shows the agglomeration of PCBM and the formation of a PCBM pure phase when solvent annealing for 90 min. The structural evolution can be described as occurring in two stages: the first stage combines the enhanced crystallization of P3HT and diffusion of PCBM into P3HT, while the second stage entails the agglomeration of PCBM and formation of a PCBM pure phase. The phase separation of PCBM from P3HT is not driven by P3HT crystallinity, but is due to the concentration of PCBM exceeding the miscibility limit of PCBM in P3HT. Correlation of the morphology to photovoltaic activity shows that device performance significantly improves with solvent annealing for 90 min, indicating that both sufficient P3HT crystallization and formation of a PCBM pure phase are crucial in the optimization of the morphology of the active layer.  相似文献   

19.
A new ordered structure of the C60 derivative PCBM ([6‐6]‐phenyl C61‐butyric acid methyl ester) is obtained in thin films based on the blend PCBM:regioregular P3HT (poly(3‐hexylthiophene)). Rapid formation of needlelike crystalline PCBM structures of a few micrometers up to 100 μm in size is demonstrated by submitting the blended thin films to an appropriate thermal treatment. These structures can grow out to a 2D network of PCBM needles and, in specific cases, to spectacular PCBM fans. Key parameters to tune the dimensions and spatial distribution of the PCBM needles are blend ratio and annealing conditions. The as‐obtained blended films and crystals are probed using atomic force microscopy, transmission electron microscopy, selected area electron diffraction, optical microscopy, and confocal fluorescence microscopy. Based on the analytical results, the growth mechanism of the PCBM structures within the film is described in terms of diffusion of PCBM towards the PCBM crystals, leaving highly crystalline P3HT behind in the surrounding matrix.  相似文献   

20.
A series of indole-substituted fulleropyrrolidine derivatives with different side groups on a pyrrolidine rings, including methyl (OIMC60P), benzyl (OIBC60P), 2,5-difluoroinebenzyl (OIB2FC60P), and 2,3,4,5,6-pentafluoroinebenzyl (OIB5FC60P), have been synthesized and used as electron acceptor in the active layer of polymer-fullerene solar cells to investigate the effect of various substitute groups on the electronic structures, morphologies, and device performances. Optical absorption, electrochemical properties and solubility of the fullerene derivatives have been explored and compared. The inverted photovoltaic devices with the configuration ITO/ZnO/Poly(3-hexylthiophene)(P3HT):[60]fullerene derivatives/MoO3/Ag have been prepared including the reference cell based on the P3HT: methyl [6,6]-phenyl-C61-butylate (PCBM) blend films. All the devices properties were measured in air without encapsulation. We also investigated the effect of the thermal annealing on the crystallinity and morphology of the active layer and the device performance. The device based on the blend film of P3HT and OIBC60P showed a power conversion efficiency of 2.46% under illumination by AM1.5G (100 mW/cm2) after the annealing treatment at 120 °C for 10 min in air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号