首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cognitive ultra‐wideband (C‐UWB) systems have recently received much attention because the huge bandwidth of ultra‐wideband (UWB) systems can better exploit the advantages of cognitive radio (CR) systems. Dynamic spectrum access (DSA) is a key technique in CR systems to implement dynamic spectrum change and can be easily implemented by changing the transmitted pulse shape in a C‐UWB communication system. In this paper, we propose an orthogonal expansion based pulse shaping method to implement DSA and to compensate for antenna distortion, which uses the orthogonal Hermite functions as the orthogonal basis. In order to eliminate the direct current (DC) component existing in even orthogonal Hermite functions and to reduce the computational complexity, two modified methods and a simplification procedure are also proposed. Our results indicate that the proposed orthogonal expansion based pulse shaping methods have a much lower computational complexity than the semi‐definite programming (SDP) method, while achieving a high power efficiency. Furthermore, we demonstrate that the distortion caused by the antenna effects can also be compensated during the pulse shaping process and a better signal‐to‐noise ratio (SNR) can thus be achieved. Therefore, the proposed method is very suitable for practical application in C‐UWB communications, in which the spectrum environment changes rapidly. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
跳时双正交脉冲位置调制(TH-BPPM)在超宽带(UWB)衰落信道的通信系统性能研究是基于超宽带室内无线信道进行研究的。频率选择性衰落是多径环境需要重点考虑的因素之一,在单用户情况下经常采用高斯近似法。利用等效瞬时信噪比和在AWGN信道下的误码率公式推导得出错误概率公式,并由Matlab仿真得到结论。  相似文献   

3.
Coexistence Between UWB and Narrow-Band Wireless Communication Systems   总被引:1,自引:0,他引:1  
Ultra-wide-band (UWB) signals are suitable for underlay communications, over a frequency band where, possibly, other systems are active. Such coexistence of UWB and other systems is possible if the mutual interference has a small impact on their respective performance. This paper aims to present recent results on the interference and coexistence among UWB systems and other conventional narrow-band (NB) systems. Specifically, we consider a point-to-point UWB (NB) link under the interference generated by a finite number of NB (UWB) radio transmitters. We consider channels including additive white Gaussian noise and multipath fading both for the victim and the interfering links, and different receiver architectures. While our main focus is on UWB systems based on impulse radio, wide-band systems employing carrier-based direct-sequence spread-spectrum and orthogonal frequency-division multiplexing are also considered.   相似文献   

4.
脉冲波形设计是超宽带(UWB)系统的关键技术。基于Coiflets正交小波提出一种产生UWB信号正交成形脉冲的新方法。仿真结果表明,基于Coiflets正交小波产生的新UWB脉冲的功率谱密度比高斯导函数脉冲能更好地满足FCC的频谱模板要求,有较高的频谱利用率。利用正交小波的正交性,设计的UWB脉冲波形可用于多用户通信。利用小波基函数产生的一系列脉冲进行组合叠加,可以达到更高的频谱利用率。  相似文献   

5.
This paper proposes an H/sub /spl infin// based semiblind channel estimation algorithm for pulse-based ultra-wideband (UWB) wireless communication systems. In the proposed scheme, sparsely inserted periodic pilot symbols are exploited to adapt to not only the time-varying channel fading and noise processes but to their changing statistics and potential external disturbances, such as interference. While the existing optimal filtering-based channel estimation schemes, which are optimized mostly for traditional narrowband or wideband systems, require a priori knowledge of the channel and noise statistics, the proposed scheme does not. By further making full use of the channel characteristics unique in UWB systems, the proposed method is thus especially useful for robust operation in the highly frequency-selective UWB indoor channels for which the channel statistics are environment-dependent, and the noise processes do not necessarily satisfy the white Gaussian distribution in the presence of potential narrowband and multiuser interferences. Performance gain of the proposed scheme over the least square method, an existing technique that could also be applied to UWB channels with unknown statistics, and the Wiener filter-based algorithm is also provided.  相似文献   

6.
We propose a direct‐sequence pulse‐amplitude modulation (DS‐PAM) ultra‐wideband (UWB) system which employs a non‐linear chirp waveform instead of the conventional Gaussian monocycle in this paper. In the approved frequency for UWB, there exist myriad narrowband interferers. Specifically, we focus on the mutual interference between UWB systems and 802.11a WLAN. This paper offers a method to suppress this inband narrowband interference by introducing a kind of non‐linear chirp waveform. Using the proposed non‐linear chirp waveform, the effects of one or more narrowband interference sources with different frequencies can be suppressed. System performance of UWB systems in the narrowband interference environment can be improved. Computer simulations with additive white Gaussian noise successfully demonstrate an increase in performance with the proposed system as compared to traditional linear chirp systems.  相似文献   

7.
Using genetic algorithm (GA), optimal wavelets are obtained to reduce ISI and ICI powers of a wavelet‐based orthogonal frequency division multiplexing (OFDM) system over a practical two path low‐voltage powerline channel or two path fading channel by relaxing the perfect quadrate mirror filter (QMF) orthogonality. Optimum wavelet‐based OFDM system experiences less interference compared to conventional and Daubechies (Db) wavelet‐based OFDM systems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, we propose a receiver structure for transmitted‐reference ultra‐wideband (TR‐‐UWB) systems with both narrowband interference (NBI) and inter‐pulse interference (IPI) mitigation capabilities. The effects of additive white Gaussian noise (AWGN) and the IEEE 802.15.4a fading channel are also taken into consideration. We adopt band‐stop filtering to suppress the NBI. For IPI, it is statistically removed by a sum‐and‐average process. Theoretical analysis is carried out to study the lower bound of the bit‐error rate (BER) performance of the proposed receiver. Numerical results show that the proposed receiver is able to provide satisfactory performance and is robust to variations in the system design parameters. It is also observed that the proposed receiver is able to deliver good performance even when there is zero delay between the reference and data pulses, which can effectively double the system throughput. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Wavelet Packet based Multi-Carrier Modulation (WPMCM) offers an alternative to the well-established OFDM as an efficient multicarrier modulation technique. It has the advantage of being a generic transmission scheme whose actual characteristics can be widely customized to fulfill several requirements and constraints of advanced communication systems. In the last decades wavelets have been favorably applied in signal and image processing fields but only recently have they attracted the attention of the telecommunication community. A lot of research questions remain to be addressed before the novel WPMCM can be used in practice. One of the major concerns is the performance of WPMCM transceivers under time synchronization errors. This is important because WPMCM symbols overlap in the time domain. In this paper, we analyze the interference in WPMCM transmission caused by the time synchronization errors. The expressions for Inter Carrier Interference (ICI) and Inter Symbol Interference (ISI) in WPMCM transmission are derived and then through simulation studies, the ability of wavelet-based systems to cope with time synchronization errors is evaluated.  相似文献   

10.
Worldwide Interoperability for Microwave Access (WiMAX) is the broadband wireless access technique that provides rapid broadband services to domestic and enterprise users. Owing to the broadcast characteristic of the WiMAX system, transmitted data security is crucial, particularly when the messages are confidential. In this work, exploiting of WiMAX to convey sensitive secret information is presented. In the first phase, we exploited conventional WiMAX (fast Fourier transform [FFT]‐WiMAX), and in the second phase, we propose a wavelet packet transform (WPT)–based WiMAX for covert communication. The quality evaluation of both covert transmission models (FFT‐WiMAX and WPT‐WiMAX) over the fading channel is done in this work. The experimental outcomes of the proposed WPT‐WiMAX covert transmission system reveal a significant enhancement in error rate (bit error rate) and peak signal‐to‐noise ratio for a given signal‐to‐noise ratio.  相似文献   

11.
An ultra-wide-band (UWB) signal is characterized by a radiated spectrum with a very wide bandwidth around a relatively low center frequency. In this paper, we study the reduced fading margin property of UWB signals. To evaluate the fading margin, we compare the performance of UWB signals in an environment with only additive white Gaussian noise (AWGN) versus the performance of UWB signals in a dense multipath environment with AWGN. The assumption here is that the presence of multipath causes a small increase in the signal-to-noise ratio required to achieve reasonable levels of bit error rate. A numerical example confirms this assumption, more specifically, the example shows that to achieve a bit error rate equal to 10-5, we require about 13.5 dB in the AWGN case and about 15 dB in the multipath case, resulting in a fading margin of just 1.5 dB. This small fading margin can be understood by the ability of the UWB signal to resolve the dense multipath  相似文献   

12.
Recently, cooperative relaying techniques have been integrated into spectrum‐sharing systems in an effort to yield higher spectral efficiency. Many investigations on such systems have assumed that the channel state information between the secondary transmitter and primary receiver used to calculate the maximum allowable transmit secondary user transmit power to limit the interference is known to be perfect. However, because of feedback delay from the primary receiver or the time‐varying properties of the channel, the channel information may be outdated, which is an important scenario to cognitive radio systems. In this paper, we investigate the impact of outdated channel state information for relay selection on the performance of partial relay selection with amplify and forward in underlay spectrum‐sharing systems. We begin by deriving a closed‐form expression for the outage probability of the secondary network in a Rayleigh fading channel along with peak received interference power constraint and maximum allowable secondary user transmit power. We also provide a closed‐form expression for the average bit‐error rate of the underlying system. Moreover, we present asymptotic expressions for both the outage probability and average bit‐error rate in the high signal‐to‐noise ratio regime that reveal practical insights on the achievable diversity gain. Finally, we confirm our results through comparisons with computer simulations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, the cognitive relay cooperation (CRC) wireless communication systems are investigated over Nakagami‐m fading channels. The decode‐and‐forward (DF) relay is employed to assist the communications between cognitive source and destination. Especially, to achieve full diversity order, we consider the case in which there is a direct path between cognitive source and destination. Besides the interference at primary users (PUs) created by secondary users (SUs), the interference at SUs created by PUs is also considered. For the interested CRC systems, we first achieve the exact expression for the CDF of the equivalent end‐to‐end signal‐to‐interference ratio (SIR) of CRC systems. Then, with the exact CDF, the exact average symbol error ratio (SER) and outage performance of CRC systems are achieved. The derivation is of significance, by which we can obtain a detailed knowledge about CRC systems. Though a single integral included in the derivation, it can be calculated numerically by employing some mathematical tools such as Matlab. At the same time, to obtain the insight and highlight the effect of system parameters on the considered CRC systems, by using the high SIR approximation, we obtain the asymptotic closed‐form expression of CDF as well as the ones of average SER and outage probability. From the asymptotic results, we can find the main factors that dominate the performance of CRC systems. The presented simulation results for outage probability and average SER show the derivations and simulations are in agreement. Moreover, in high SIR the achieved asymptotic results match well the exact ones. As a result, in high SIR we can employ the asymptotic closed‐form solutions to evaluate the exact performance of CRC systems. This can reduce greatly the implementation complexity. Besides this, the simulations also show that the diversity order is dominated by the fading severities of the secondary systems, i.e. the diversity order be proportional to the summation of the minimum fading severity between the two hops and that of the direct link. In contrast, the parameters of the primary systems only affect the coding gain, not the diversity gain. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Cognitive radio (CR) with spectrum‐sharing feature is a promising technique to address the spectrum under‐utilization problem in dynamically changing environments. In this paper, the achievable capacity gain of spectrum‐sharing systems over dynamic fading environments is studied. To perform a general analysis, a theoretical fading model called hyper‐fading model that is suitable to the dynamic nature of CR channel is proposed. Closed‐form expressions of probability density function (PDF) and cumulative density function (CDF) of the signal‐to‐noise ratio (SNR) for secondary users (SUs) in spectrum‐sharing systems are derived. In addition, the capacity gains achievable with spectrum‐sharing systems in high and low power regions are obtained. The effects of different fading figures, average fading powers, interference temperatures, peak powers of secondary transmitters, and numbers of SUs on the achievable capacity are investigated. The analytical and simulation results show that the fading figure of the channel between SUs and primary base‐station (PBS), which describes the diversity of the channel, does not contribute significantly to the system performance gain. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, we present detect-and-forward relaying approaches for a coherent ultra-wideband (UWB) detection (specifically selective-Rake reception) system and for a noncoherent UWB detection (specifically differential transmittedreference, DTR) system in order to achieve greater coverage in multipath fading channels. Multiple-antenna relay systems are also proposed to further enhance the overall system performance. The corresponding bit error rate (BER) performance is evaluated theoretically and via simulations. The effect of some design factors on this performance is investigated. Analytical and simulation results verify the performance improvement of the proposed relay systems over the direct transmission systems.  相似文献   

16.
Multi-band Orthogonal Frequency Division multiplexing based Ultra Wide-band (MB-OFDM UWB) technology is one of the strong alternatives for high data rate wireless personal area networks (WPANs) with low power consumption. The capacity of such systems is degraded by multi-path fading, shadowing, multi-user interference and noise. To improve system capacity under these adverse effects, in this paper, we devise cross-layer time scheduling methods, Proportional Time Scheduling with Modiano Algorithm (PTS-MA) and Proportional Time Scheduling with Channel State Information (PTS-CSI), in which scheduling and link adaptation are performed using instantaneous bit error probability (IBEP) estimates obtained through Modiano’s algorithm and our novel estimation technique, respectively. We evaluate the performance of the PTS schemes by using numerical experiments. Simulation results suggest PTS-CSI scheduler as the most promising candidate for practical MB-OFDM UWB WPANs with high capacity and fair throughput distribution.  相似文献   

17.
Ultra‐wideband (UWB) system is one of the possible solutions to future short‐range indoor data communications with large frequency bandwidth. However, it must coexist with other narrowband wireless systems that may cause interference to each other, and furthermore a large bandwidth will inevitably result in multi‐path fading. The Rake receiver is applicable to combat multi‐path fading but its performance degrades greatly when the narrowband interference (NBI) is present. Although some optimized Rake receivers were proposed to suppress the NBI, such as the minimum mean square error (MMSE) one, their computational complexities are usually too high to be practically implemented. In this paper, we present a new adaptive Rake receiver which can effectively suppress the NBI, based on the nonlinear Masreliez‐type approximate conditional mean (ACM) technique. Simulation results show that it outperforms the previous schemes and even it achieves almost the same performance as that of a MMSE Rake receiver but with much lower complexity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents a highly accurate frequency offset estimation algorithm for multi-band orthogonal frequency division multiplexing (MB-OFDM) systems effective for realistic ultra-wideband (UWB) environment. The proposed algorithm derives its estimates based on phase differences in the received subcarrier signals of several successive OFDM symbols in the preamble. We consider different carrier frequency offsets and different channel responses in different bands to keep the analysis and simulation compatible for practical multi-band UWB scenario. Performance of the proposed algorithm is studied by means of bit error rate (BER) performance of MB-OFDM system. In order to compare the variance of the synchronizer to that of the theoretical optimum, we derive the Cramer–Rao lower bound (CRLB) of the estimation error variance and compare it with the simulated error variance both in additive white Gaussian noise and UWB channel model (CM) environments, CM1–CM4. Next, we modify the estimation algorithm by proposing a multi-band averaging frequency offset synchronization (MBAFS) scheme. We establish superior BER performance with MBAFS compared to our first scheme. We calculate modified CRLB for MBAFS and compare it with simulation results for CM1–CM4. Both analysis and simulation show that MBAFS algorithm can estimate the carrier frequency offset effectively and precisely in UWB fading channels for MB-OFDM applications. We also analyze the computational complexity of both the proposed algorithms in order to verify their feasibility of implementation in practical UWB receiver design.  相似文献   

19.
20.
Most resource allocation algorithms are based on interference power constraint in cognitive radio networks.Instead of using conventional primary user interference constraint,we give a new criterion called allowable signal to interference plus noise ratio(SINR) loss constraint in cognitive transmission to protect primary users.Considering power allocation problem for cognitive users over flat fading channels,in order to maximize throughput of cognitive users subject to the allowable SINR loss constraint and maximum transmit power for each cognitive user,we propose a new power allocation algorithm.The comparison of computer simulation between our proposed algorithm and the algorithm based on interference power constraint is provided to show that it gets more throughput and provides stability to cognitive radio networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号